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The primary analysis was to evaluate the performance of digoxin toxicity recognition 

by ECG12Net and clinicians in a human-machine competition. Receiver operating char-

acteristic (ROC) curve and area under the curve (AUC) were applied to evaluate the com-

petition results. Additionally, the sensitivity and specificity of digoxin toxicity recognition 

by the deep learning model and clinical physicians were calculated. The results of the 

whole validation evaluation by the deep learning model were also presented. 

The secondary analyses were performed on the whole validation cohort. Lead-spe-

cific analysis was conducted to evaluate the lead-based information contributions. We 

tried to include more clinical information, such as patient characteristics and laboratory 

test results, to improve the model performance. The multivariable logistic regression 

model was used to integrate the deep learning model and clinical information. A series of 

logistic models will identify the effects of different clinical information on the perfor-

mance of digoxin toxicity recognition. AUCs based on the ROC curve were applied to 

evaluate the change in model performance. 

We split these ECGs into training (n= 48) and validation (n= 13) cohorts by date. There 

are no ECGs of the validation cohort belonging to patients who have ECGs used in train-

ing. Meanwhile, normal ECGs were collected from our emergency room. A total of 177,066 

ECGs from 84,286 cases in the same study period were included. We also split these ECGs 

into training (160,868) and validation (16,198) cohorts by the same date. Patients with any 

laboratory record of serum digoxin concentration no less than 2 ng/mL were excluded 

from the normal ECGs group. All of the ECG records were collected by Philips 12-Lead 

ECG machines (PH080A, Philips Medical Ssytems, Andover, MA, USA). The ECG records 

were standardized with the 10-mm high reference pulse as 1 mV and the 5-mm width as 

200 ms. Each 12-lead ECG was taken for 10 seconds, and the ECG signals were presented 

as a standard ECG for physician interpretation. Patient characteristics and laboratory tests 

were collected from our electronic medical records. The timely nearest laboratory records 

were assigned for each ECG. Because the ECG tests were sometimes conducted in a short 

time period, some ECGs from the same patients might share the same patient characteris-

tics and laboratory records. The collected patient characteristics included gender, age, 

height, weight, DM, CAD, hypertension, HF, hyperlipidemia, CKD, COPD, pneumotho-

rax, and AF. The laboratory tests included serum concentration of K, Na, Cl, total Ca, free 

Ca, Mg, CK, Troponin I, BUN, Cr, and serum digoxin concentration. Only the laboratory 

records within 24 hours were included. 

Deep Learning Model Implementation 

Suppose that a standard 12-lead ECG signal comprises 12 sequences of N numbers 

(n = 1250 in our database). To detect the digoxin toxicity, ECG signal sequence X = [x1,1, 

x1,2, …, x1,n; x2,1, x2,2, …, x2,n; …; x12,1, x12,2, …, x12,n] is used as the input, and the 

output is one-hot encodes of digoxin toxicity categories (digoxin toxicity and non-digoxin 

toxicity). For example, a label of digoxin toxicity is encoded as [1, 0], and a label of non-

digoxin toxicity is encoded as [0, 1], respectively. Each output label corresponds to a seg-

ment of the input. Because the ECG information is mostly provided by morphologic 

changes with shift invariance, convolutional layers with weight sharing were used to 

adapt to this situation and reduce the hazard of overfitting. We therefore developed a 12-

channel sequence-to-sequence model to conduct this task as a revision of DenseNet [31]. 

The complete architecture of ECG12Net is shown in Figure S1.  

We defined a “dense unit” as a neural combination, as follows: (1) a batch normali-

zation layer to normalize input data [32], (2) a rectified linear unit (ReLU) layer for non-

linearization [33], (3) a 1 × 1 convolution layer with 4K filters to reduce the dimensions of 

the data, (4) a batch normalization layer for normalization, (5) a ReLU layer for non-
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linearization, and (6) a 3 × 1 convolution layer with 4K filters to extract features, (7) a batch 

normalization layer for normalization, (8) a ReLU layer for non-linearization, and (9) a 1 

× 1 convolution layer with K filters to extract features. K is a model constant, which was 

set at 32 in all our experiments. After using a dense unit to extract features, we used the 

dense connectivity resulting from direct connections from any layer to all subsequent lay-

ers to build a “dense block.” We designed a model with five dense blocks comprising 3, 

3, 6, 6, and 3 dense units, respectively. Dense blocks cannot be concatenated when the size 

of feature maps change. Thus, a pooling block was used to concatenate each dense block 

for down-sampling in our architecture. This block included a dense unit with 2 × 1 stride 

and an average pooling layer with a 2 × 1 kernel size and stride, which was used for down-

sampling [34]. Each dense block was concatenated by the pooling block to integrate the 

features of the previous blocks. 

A length of 864 numeral sequences was used as the input in our experiment. We de-

signed an ECG lead block with 80 trainable layers, whose architecture is shown in Figure 

S1A. The input data were passed through a batch normalization layer, followed by a con-

volution layer, another batch normalization layer, a ReLU layer, and a pooling layer. The 

initial convolution layer comprised K convolution filters with a kernel size of  

7 × 1 and a stride of 2 × 1. Next, the data were passed through a series of dense blocks and 

a pooling block, resulting in a 16 × 1 × 864 array. A ReLU layer, a batch normalization 

layer, and a global pooling layer were followed by the last dense block. Finally, a fully 

connected layer with k output was created for follow-up use. Where k is the number of 

categories, and it is equal to 3 in the first MI detection model and 4 in the second location 

analysis model of STEMI, respectively. This ECG lead block was used to extract 864 fea-

tures from each ECG lead, making a basic output prediction based on each lead. Figure 

S1B shows how ECG12Net integrated all the information from the ECG leads to make an 

overall prediction. ECG12Net comprised 12 ECG lead blocks corresponding to lead se-

quences. We designed an attention mechanism based on a hierarchical attention network 

to concatenate these blocks, increasing the interpretive power of ECG12Net [35]. The at-

tention block comprised a batch normalization layer followed by a fully connected layer 

and then two combinations of a batch normalization layer, a ReLU layer, and a fully con-

nected layer. The first and second fully connected layers each contained 8/k neurons. At-

tention scores were calculated for each ECG lead and then integrated for standardization 

by a linear output layer. The standardized attention scores were used to weight the 12 

ECG lead outputs by simple multiplication. The 12 weighted outputs were summed and 

converted into a softmax output layer to give the final prediction value. The above model 

using ECG information only was named ECG12Net, which contained 82 trainable layers. 

The m-log-loss function was used to calculate model loss. A dropout layer [36] was added 

in the only fully connected layer, and the dropout rate was set to 0.5. 

Training Details  

The 12-lead ECG signal sequences were first trained separately by the 12 ECG leads. 

Due to uneven distribution of digoxin toxicity cases and controls, an oversampling pro-

cess was implemented to improve performance by ensuring that rare samples were ade-

quately recognized [34,35]. We sampled 18 ECGs from digoxin toxicity cases and 18 ECGs 

from controls in each batch. This process sufficiently considered rare digoxin toxicity cases 

so as not to be skewed by the overwhelming number of controls. We used the software 

package MXNet version 1.3.0 [36] to implement ECG12Net. The settings used for the train-

ing model were as follows: (1) Adam optimizer with standard parameters (β1 = 0:9 and β2 

= 0:999) and a batch size of 36 for optimization; (2) initial learning rate set at 0.001 and 

lowered by 10 three times when validation loss plateaued after an epoch; and (3) a weight 

decay of 10−4 [37]. Because the sampling rate of our machine is 500 Hz, our 12-lead ECG 

signal includes 12 numeral sequences with 5,000 digits. However, the standard input for-

mat of ECG12Net is a length of 1024 numeric sequences. We randomly cropped a length 

of 1024 sequences as input in the training process. The initial weights of the digoxin 
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toxicity recognition model were based on the transfer learning from the potassium con-

centration prediction model [33]. 

The patients in the training cohort were divided into five subgroups, and we used 

the 5-fold cross-validation which used four of them as training subset and 1 of them as 

tuning subset in each fold. In other words, we totally trained five DLMs, and the final 

prediction in validation cohorts was generated by the average of them. During the infer-

ence stage, the nine overlapped a length of 1024 sequences based on interval sampling (X1 

to X1024, X498 to X1521, X995 to X2018, X1492 to X2515, X1989 to X3012, X2486 to X3509, X2983 to X4006, X3480 

to X4503, and X3977 to X5000) and were used to generate prediction and averaged as the final 

prediction. Finally, a total of 45 standardized probabilities predicted via five DLMs and 

nine sequences were generated for each ECG in the validation cohort, and the average of 

them was used as the final probability. For deciding the cut-point for the final probability, 

we applied the receiver operating characteristic (ROC) curve to each tuning subset. A total 

of five cut-points for maximizing the sum of sensitivity and specificity were selected in 

each subset, and the mean of them was used as the cut-point for final probability. 

A previous study reported severe overfitting in an atrial fibrillation detection task 

and suggested a series of data augmentations to improve model performance [38]. In the 

current study, the problem of overfitting was due to the large number of parameters in 

the deep learning architecture (~3 million trainable parameters) relative to the sample size. 

The first step in tackling this issue was to resize sequence length by adjusting heart rate. 

We randomly resampled a broader range of heart rates in a uniform distribution from 

0.8HR to 1.2HR, where HR is the original heart rate for each sample. The second step was 

to randomly crop a length of 1024 sequences as input. The third step was to add a random 

variable drawn from a Gaussian distribution with a mean of 0 and a standard deviation 

of 0.1. Fourth, time points were selected uniformly and at random, and the ECG signal 

values in a 50 ms vicinity of these points were set at 0. This method is called dropout burst 

[38]. Finally, we set six random ECG lead sequences to 0 in the combined training step. 

We observed that the final deep learning model only used information from a few ECG 

leads to make a prediction, which inferred that the model had ceased to learn features 

from other ECG leads because it had perfectly predicted all the data in the training set. 

This approach forced the deep learning model to learn all the abnormal ECG leads. 

 



Int. J. Environ. Res. Public Health 2021, 18, 3839 4 of 6 
 

 

 

Figure S1. The deep learning model architecture. The training model is shown as above and de-

scribed in the supplementary text. BN = Batch Normalization; conv = convolution layer; ReLU = 

Rectified Linear Units; dense = dense unit; FC = fully connected layer. (A) All digoxin toxicity 

ECGs, ranking from lower disease score to higher disease score by AI analysis. (B) Selected normal 

ECGs, ranking from higher disease score to lower disease score. 

Table S1. Patient characteristics and laboratory results in the training and validation cohorts. 

Patients 

Characteristics 

Training Cohort 

(n = 160,916) 

Validation Cohort 

(n = 16,211) 
p-Value 

Gender (male) 84,219 (52.3%) 8504 (52.5%) 0.765 

Age (years) 63.2 ± 19.4 64.8 ± 20.0 <0.001 

Height (cm) 162.0 ± 18.6 161.2 ± 8.8 0.032 

Weight (kg) 63.8 ± 14.1 64.0 ± 13.6 0.548 

BMI (kg/m2) 24.5 ± 8.2 24.6 ± 4.8 0.570 

DM 43,200 (26.9%) 4717 (29.1%) <0.001 

CAD 38,742 (24.1%) 5100 (31.5%) <0.001 

Hypertension 70,835 (44.0%) 8439 (52.1%) <0.001 

HF 18,544 (11.5%) 2217 (13.7%) <0.001 

Lipidemia 48,370 (30.1%) 5098 (31.5%) <0.001 

CKD 21,543 (13.4%) 1823 (11.2%) <0.001 

COPD 34,876 (21.7%) 4097 (25.3%) <0.001 

Pneumothorax 834 (0.5%) 59 (0.4%) 0.008 

AF 11,373 (7.1%) 1166 (7.2%) 0.553 

K 3.9 ± 0.6 3.9 ± 0.6 <0.001 

Na 136.3 ± 4.8 136.1 ± 5.0 <0.001 

Cl 102.4 ± 5.7 101.3 ± 7.7 <0.001 

TCa 8.6 ± 0.7 8.4 ± 0.7 <0.001 

FCa 4.4 ± 0.3 4.4 ± 0.3 <0.001 

Mg 2.1 ± 0.3 2.1 ± 0.4 0.002 

Tro I 0.3 ± 3.4 0.2 ± 3.2 0.143 

BUN 26.2 ± 23.0 24.1 ± 20.3 <0.001 

Cr 1.6 ± 2.0 1.4 ± 1.7 <0.001 

eGFR 76.2 ± 39.0 74.1 ± 35.9 <0.001 

Numbers of missing values: Gender: 26; Age: 38; Height: 124,670; Weight: 124,670; BMI = Body 

mass index: 124,670; DM = Diabetes mellitus: 26; CAD = Coronary artery disease: 26; 
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Hypertension: 26; HF = Heart failure: 26; Lipidemia: 26; CKD = Chronic kidney disease: 26; COPD 

= Chronic obstructive pulmonary disease: 26; Pneumothorax: 26; AF = Atrial fibrillation: 26; K = 

Potassium: 3096; Na = Sodium: 3783; Cl = Chloride: 113,603; TCa = Total calcium: 153,425; FCa = 

Free calcium: 161,379; Mg = Magnesium: 159,463; Tro I = Troponin I: 27,321; BUN = Blood urea 

nitrogen: 89,508; Cr = Creatinine: 3918; eGFR = Estimated glomerular filtration rate: 3956. The sig-

nificant level was 0.05/24 = 0.002 based on Bonferroni correction. 

Table S2. Univariable and multivariable logistic regression analyses in the validation cohort. 

Patient 

Characteristics 

AI Model Integration Model 1 Integration Model 2 

OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value 

Disease score 1.09 (1.07–1.11) <0.001 1.08 (1.06–1.11) <0.001 1.08 (1.06–1.11) <0.001 

Gender (male)   0.44 (0.13–1.53) 0.199 0.48 (0.13–1.75) 0.263 

Age (years)   1.01 (0.96–1.06) 0.668 1.00 (0.95–1.06) 0.995 

Hypertension   0.70 (0.18–2.72) 0.606 0.54 (0.13–2.20) 0.386 

AF   10.74 (3.01–38.32) <0.001 16.89 (4.13–69.11) <0.001 

eGFR     0.96 (0.94–0.99) 0.005 

AUC 0.912 0.980 0.987 

p-Value (AUC) NA 0.260 0.207 

The significant level was 0.05/6 = 0.008 based on Bonferroni correction. 

 

  

  

Figure S2. Consistency analysis of answers given by the deep learning model and human experts: the answers given 

by our physicians were “risk” and “norm”, corresponding to potential digoxin toxicity and normal ECGs, respectively. 

The numbers shown in the last column are the probabilities given by the AI. The positive cut-off of points is 0.334 in this 

analysis based on previous ROC curves, and the colors green, yellow, and red represent the low, middle, and high risk 

levels identified by the AI, respectively. There are 4 emergency physicians and 5 cardiologists participating in this com-

petition. The emergency physicians include 2 residents and 2 attending physicians, indicated as ER-R4(1), ER-R4(2), ER-

V5, and ER-V14. The cardiologists include 3 residents and 2 attending physicians, indicated as CV-R1, CV-R3(1), CV-R3(2), 

CV-V1, and CV-V8. The sensitivities/specificities were 76.9%/69.2%, 92.3%/63.5%, 84.6%/80.8%, 76.9%/75.0%, 61.5%/65.4%, 

69.2%/88.5%, 92.3%/59.6%, 61.5%/90.4%, and 92.3%/90.4% in ER-R4 (2), ER-R4 (1), CV-V8, CV-R3 (2), CV-R1, CV-V1, ER-

V14, CV-R3 (1), and ER-V5, respectively. (A) All digoxin toxicity cases. (B) Selected normal ER cases.  
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Figure S3. Univariable and multivariable logistic regression analyses in the training cohort: model 1 only included the 

significant patient demographics and disease history, and model 2 additionally included other significant laboratory tests. 

All other variables not included in the multivariable analysis were not significantly associated with digoxin toxicity. The 

continuous variables are standardized by mean and standard deviation; therefore, the units of each continuous variable 

were 1 standard deviation. 
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