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CLINICAL RESEARCH

Heart-Brain 346-7 Score: the development and validation of a simple mortality
prediction score for carbon monoxide poisoning utilizing deep learning

Jason J. Rosea,b� , Michael S. Zhangb� , Jerry Panc, Marc C. Gauthierb, Anthony F. Pizond,e ,
Melissa I. Saulc and Seyed M. Nouraieb

aUniversity of MD School of Medicine, University of Maryland, Baltimore, MA, USA; bDivision of Pulmonary, Allergy and Critical Care
Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; cDepartment of Medicine, University of Pittsburgh, Pittsburgh,
PA, USA; dDivision of Medical Toxicology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; eDepartment of Emergency
Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

ABSTRACT
Introduction: Acute mortality from carbon monoxide poisoning is 1–3%. The long-term mortality risk
of survivors of carbon monoxide poisoning is doubled compared to age-matched controls. Cardiac
involvement also increases mortality risk. We built a clinical risk score to identify carbon monoxide-
poisoned patients at risk for acute and long-term mortality.
Methods: We performed a retrospective analysis. We identified 811 adult carbon monoxide-poisoned
patients in the derivation cohort, and 462 adult patients in the validation cohort. We utilized baseline
demographics, laboratory values, hospital charge transactions, discharge disposition, and clinical chart-
ing information in the electronic medical record in Stepwise Akaike’s Information Criteria with Firth
logistic regression to determine optimal parameters to create a prediction model.
Results: In the derivation cohort, 5% had inpatient or 1-year mortality. Three variables following the final
Firth logistic regression minimized Stepwise Akaike’s Information Criteria: altered mental status, age, and
cardiac complications. The following predict inpatient or 1-year mortality: age > 67, age > 37 with car-
diac complications, age > 47 with altered mental status, or any age with cardiac complications and
altered mental status. The sensitivity of the score was 82% (95% confidence interval: 65–92%), the specifi-
city was 80% (95% confidence interval: 77–83%), negative predictive value was 99% (95% confidence
interval: 98-100%), positive predictive value 17% (95% confidence interval: 12–23%), and the area under
the receiver operating characteristic curve was 0.81 (95% confidence interval: 0.74–0.87). A score above
the cut-off point of �2.9 was associated with an odds ratio of 18 (95% confidence interval: 8–40). In the
validation cohort (462 patients), 4% had inpatient death or 1-year mortality. The score performed similarly
in the validation cohort: sensitivity was 72% (95% confidence interval: 47–90%), specificity was 69% (95%
confidence interval: 63–73%), negative predictive value was 98% (95% confidence interval: 96–99%), posi-
tive predictive value was 9% (95% confidence interval: 5–15%) and the area under the receiver operating
characteristic curve was 0.70 (95% confidence interval: 60%–81%).
Conclusions: We developed and validated a simple, clinical-based scoring system, the Heart-Brain 346-7
Score to predict inpatient and long-term mortality based on the following: age > 67, age > 37 with cardiac
complications, age > 47 with altered mental status, or any age with cardiac complications and altered
mental status. With further validation, this score will hopefully aid decision-making to identify carbon mon-
oxide-poisoned patients with higher mortality risk.
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Introduction

Over 50,000 carbon monoxide (CO) poisoning cases occur in the
United States yearly [1]. Normobaric oxygen, hyperbaric oxygen
therapy, and supportive care are the main treatments [1–4]. The
reported case fatality rate is 1–3% [1,2]. Characteristics associated
with mortality include fire as a CO source, age, syncope,
Glasgow Coma Scale, endotracheal intubation, myocardial injury,
carboxyhemoglobin level, white blood cell count, serum sodium
and creatinine concentrations, and pH less than 7.20 [5–8].

Survivors of acute CO poisoning have increased long-term
mortality [5,6,9], especially those with intentional exposure

[6]. Major causes of death include alcohol use disorder,
motor vehicle collisions, and intentional self-harm [3].
Patients with cardiovascular complications also have
increased mortality compared to those without [5,10]. The
quality of life for survivors is severely affected [9] and care
should involve close outpatient follow-up [2].

Beyond mortality, CO-poisoned patients develop neuro-
logical and cardiovascular complications [1,5,11]. Between
15% and 40% of survivors of CO poisoning suffer from per-
manent neurocognitive and affective deficits [5,11,12].
Ventricular dysfunction, myocardial infarction, and
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dysrhythmias occur in patients with moderate to severe poi-
sonings and are associated with increased mortality [5,6].
High carboxyhemoglobin levels are associated with both
acute and future myocardial infarction [5,6]. In one study,
over half of moderately to severely CO-poisoned patients
developed left ventricular dysfunction [9].

While CO poisoning is a major cause of morbidity and mor-
tality, there is no universal mortality prediction score. Existing
scores such as the poison severity score (PSS) [13], sequential
organ failure assessment (SOFA) [14], the APACHE-II score [15],
and Charlson Comorbidity Index [16] do not identify CO poi-
soning patients at high-risk of acute or long-term mortality. A
proposed score for carbon monoxide poisoning could identify
high-risk patients for: 1) inpatient assessment, and 2) close
outpatient follow-up.

Rose et al. [4] previously reported a retrospective cohort
of CO poisoning patients to identify and define patients who
should receive hyperbaric oxygen therapy in clinical practice
and characterize their acute and long-term mortality.

In this study, we have utilized the medical record database
of a large regional health system to generate an initial cohort
from 2000 to 2014 to develop a prediction score for combined
in-hospital and 1-year mortality in CO poisoning utilizing deep
learning techniques. We then generated a second cohort, from
2014 to 2018, to validate the prediction algorithm.

Methods

Study design and identifying carbon monoxide poisoned
patients for the derivation and validation cohorts

We included the TRIPOD (Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or

Diagnosis) Statement for this study in the Supplemental
Information.

Data from the electronic medical records of CO poisoned
patient were used. For the derivation cohort, as previously
reported [4], patients aged greater than or equal to 18 years
with a CO poisoning diagnosis at hospital discharge between
January 2000 to April 2014 were identified using the
International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD9-CM) codes. Patients included in
this study had ICD9-CM diagnosis codes 986, E868.3, E868.8,
E868.9, E982.1, E982.1, E868.2, or E982.0. Patients were identi-
fied through an electronic medical record data repository
that contains full-text medical records and integrates infor-
mation from central transcription, laboratory, pharmacy,
finance, administrative, and other departmental databases
[17]. For the derivation cohort, we identified 2,825 encoun-
ters for 1,289 unique patients in 15 hospitals between
January 2000 and April 2014 with defined ICD9-CM diagnosis
codes. After excluding pediatric patients (190), we identified
1,099 unique adult patients with CO poisoning. Due to previ-
ous findings that hyperbaric oxygen therapy significantly
lowers both acute and 1-year mortality [4], we built the der-
ivation algorithm from 811 of 1,099 patients who had no
hyperbaric oxygen therapy documented as a method to min-
imize confounders (Table 1).

For the validation cohort, patients aged greater than or
equal to 18 years with a CO poisoning diagnosis at hospital
discharge between May 2014 to April 2018 were identified
using both the ICD9-CM codes or International Classification
of Diseases, Tenth Revision, Clinical Modification (ICD10-CM)
codes. Database-based research findings utilizing ICD-9 codes
are consistent with ICD-10 codes across various disciplines
[18–20]. Patients included in this study had ICD9-CM

Table 1. Characteristics of the derivation cohort and validation cohort populations.

Derivation cohort Validation cohort

P value�n Results n Results

Demographics
Agea 811 43 (30–56) 462 49 (35–60) 0.003��
Female 811 417 (51%) 462 94 (33%) <0.001
Race 793 462 0.013
White 547 (69%) 348 (75%)
African American 194 (24%) 80 (17%)
Other 52 (7%) 34 (7%)
Admit charge 811 148 (18%) 462 127 (28%) 0.001
Intensive care unit charge 811 50 (6%) 141 39 (28%) <0.001
Outside hospital transfer 810 46 (5%) 462 48 (10%) 0.002
Predictorsb

Altered metal status 811 145 (18%) 431 105 (24%) 0.007
Chest pain 811 101 (12%) 431 42 (10%) 0.25
Syncope 811 102 (13%) 431 101 (23%) <0.001
Shortness of breath 811 113 (14%) 431 90 (21%) 0.002
High carboxyhemoglobin (>25%) 811 71 (9%) 385 60 (16%) <0.001
Cardiac complication 811 57 (7%) 431 62 (14%) <0.001
Outcomes:
Inpatient death 811 12 (1.5%) 462 8 (1.7%) 0.73
1-year mortalityc 811 26 (3.2%) 462 11 (2.4%) 0.57
Miscellaneous:
Received hyperbaric oxygen therapyd 811 0 (0%) 141 35 (25%) <0.001
aMedian (IQR).
bFemale gender as a predictor is included in demographics.
cInpatient mortality was excluded from 1-year mortality.
dPatients receiving HBOT were excluded from derivation cohort, included in validation cohort due to the significant effect of HBOT
on mortality as previously reported (19).�: Chi-square test for categorical variables except for age unless otherwise stated; ��: Student’s t test for continuous variables.
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diagnosis codes above or ICD10-CM diagnosis codes of:
T58.2X1A-4A, T58.8X1A-4A, T58.91XA-94XA, T58.01XA-04XA,
T58.11XA-14XA, T58.0-04, T58.1-14, T58.2, T58.2X-2� 4, T58.8,
T58.8X-8� 4, and T58.9-94. Excluding pediatric patients, we
identified 462 adult patients with CO poisoning in the valid-
ation cohort in 35 hospitals between May 2014 and April
2018 (Table 1). The validation cohort contained both patients
who did and who did not receive hyperbaric oxygen
therapy.

To maintain patient confidentiality, data were de-identi-
fied using De-ID Software through the use of an honest bro-
ker system [21]. The index hospitalization was defined as the
first admission meeting all inclusion criteria for patients with
multiple admissions.

Data collection

Baseline demographics, laboratory values, hospital charge
transactions, emergency department physician documenta-
tion, and medical record discharge data were obtained from
the electronic medical data repository. Two academic internal
medicine physicians reviewed the de-identified emergency
department reports to record the mechanism of poisoning,
symptoms, cardiac involvement and carboxyhemoglobin lev-
els in both derivation and validation cohorts. Acute mortality
was determined by hospital discharge disposition. To deter-
mine 1-year mortality, we censored patients who died in-hos-
pital, then examined patients with a health encounter
greater than 1 year from the discharge date of the index CO
poisoning. Patients who did not have a visit greater than
1 year from initial CO poisoning were compared with the
United States Social Security Death Index to determine
death.

We created the composite variable “cardiac complication”
for any of the following recorded in the electronic medical
record data repository [17] on the initial patient encounter:
cardiac arrest, shock, dysrhythmia or myocardial infarction
mentioned in clinical chart review, elevated serum troponin
> 0.10 ng/mL, or shock requiring vasopressors or ionotropes.

Study variables and definitions

We used variables with minimal historical information to
develop a model that would be readily available. These 10
variables were assessed: altered mental status, chest pain,
syncope, shortness of breath, fire exposure, motor vehicle
exposure, carboxyhemoglobin levels, sex, presence of any
cardiac complication (described above), and age. We did not
identify patients with domestic fuel exposure as the source
of CO in the derivation cohort. We combined acute mortality
and 1-year mortality as the primary outcome measure due to
low rate of acute mortality alone and goal of identifying
high risk patients.

Charlson Comorbidity Index

We used ICD-9 and ICD-10 codes of each patient to deter-
mine medical comorbidities. We assigned a Charlson
Comorbidity Index score derived from comorbidities [22].

Statistical analysis

Results were expressed as median and inter-quartile ranges
(continuous variables) or as percentages (categorical varia-
bles). We compared variable distribution using Student’s t-
tests or Wilcoxon rank sum tests, as appropriate, for continu-
ous variables, and using chi-square tests for categorical varia-
bles. All statistical analyses were performed with Stata 17.0
(StataCorp LP, College Station, TX, USA).

Model derivation and comparison to the Charlson
Comorbidity Index

We used deep learning to identify a desirable model from
the data set with Stepwise Akaike’s Information Criterion
with backward model selection [23]. We calibrated for out-
liers and separation in the final model with Firth logistic
regression [24]. The model was compared to the Charlson
Comorbidity Index using chi-square binomial test to assess
sensitivity, specificity, positive predictive value, and negative
predictive value. Likelihood ratio test was used to compare
odds ratios.

Model validation

By the TRIPOD guidelines, we conducted internal validation
of the score using a bootstrapping method in validation
cohort utilizing (Supplementary Table 1) [25].

Results

Patient characteristics in derivation and validation
cohorts

For the derivation cohort, we identified 2,825 encounters for
1,289 unique patients in 15 hospitals between January 2000
and April 2014 with defined ICD9-CM diagnosis codes. After
excluding pediatric patients (190), we identified 1,099 unique
adult patients with CO poisoning. Due to previous findings
that hyperbaric oxygen therapy significantly lowers both
acute and 1-year mortality [4], we built the derivation algo-
rithm from 811 of 1,099 patients who had no documentation
of hyperbaric oxygen therapy to minimize confounders.
Excluding pediatric patients, we identified 462 adult patients
with CO poisoning in the validation cohort in 35 hospitals
between May 2014 and April 2018 (Table 1). The validation
cohort contained both patients who did and who did not
receive hyperbaric oxygen therapy.

In the derivation cohort of 811 patients, the median age
was 43 years, 51% were female sex, 69% were Caucasian,
24% African American, and 7% other race. Eighteen percent
were admitted to the hospital, 6% required intensive care
unit (ICU) level care, and 5% were transferred from outside
or University of Pittsburgh Medical Center affiliated hospital.
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For predictors of interest, 18% had altered mental status,
12% had chest pain, 13% had syncope, 14% had shortness of
breath, 9% had a carboxyhemoglobin level > 25%, and 7%
had a cardiac complication. Twelve of 811 (1.5%) patients
died while inpatients, and amongst survivors of initial CO
poisoning, 3.2% (26 of 811) patients died within 1 year for a
combined 38 fatalities (4.7%) (Table 1).

For the validation cohort, we identified 462 unique
patients. The median age was 49 years, 33% were female sex,
75% Caucasian, 17% African American, and 7% other race.
28% were admitted inpatient, 28% required ICU level care,
and 10% were directly transferred from outside or University
of Pittsburgh Medical Center affiliated hospitals. For predic-
tors of interest, 24% had altered mental status, 10% had
chest pain, 23% had syncope, 21% had shortness of breath,
16% had a carboxyhemoglobin level > 25%, and 14% had a
cardiac complication. Eight of 462 (1.7%) patients died while
inpatients, and amongst survivors of initial CO poisoning,
2.4% (11 of 462) patients died within 1 year, for a combined
19 (4.1%) fatalities. Thirty-five of 141 patients (25%) were
known to have received hyperbaric oxygen therapy (Table 1).

Deriving a model to predict inpatient or 1-year
mortality

Ten variables that would be immediately available to an
accepting triage provider, with no laboratory results other
than the reported carboxyhemoglobin level or potentially
point of care troponin level, were included in model selection:
altered mental status, chest pain, syncope, shortness of breath,
fire exposure source of CO, motor vehicle exposure of CO,
carboxyhemoglobin level, sex, presence of cardiac complica-
tion, and age. Through stepwise model selection, four varia-
bles were selected to minimize Akaike’s Information Criteria:
syncope, age, altered mental status, and cardiac complications.
To calibrate the model using firth logistic regression and con-
trol for separation, three variables were selected: altered men-
tal status, age, and cardiac complications. The final regression
model is described in Table 2 with the “constant” parameter,

or intercept, representing the output of the derived equation
when all independent variables are equal to zero.

The optimal cut-point for the regression to predict com-
bined inpatient or 1-year mortality was �2.9. The following
combinations of age (integer cut-offs) and symptoms pro-
duced regression output greater than �2.9, to predict that a
patient would be at risk for acute or 1-year mortality: age >

68 without other features, age > 37 with cardiac complica-
tion, age > 47 with altered mental status, and both cardiac
complication and altered mental status at any age. For ease
of use, functionally, the cut-off of age > 68 was changed to
age > 67 to create the “Heart Brain 346-7 Score”. This simple
age-category definition of the score was what we tested for
performance as it is what would be used clinically. We
termed the score “Heart Brain 346-7 Score” as it involves
assessing if a given patient for cardiac manifestations, a neu-
rocognitive complaint (altered mental status), and age at
given cut-off points (37, 47, and 67 years old). To determine
if a patient is at risk for inpatient or 1-year mortality, the
three variables are input into the logistic regression to deter-
mine if the output is greater than the optimized cut-point of
�2.9. For example, a 55-year-old patient with altered mental
status and no cardiac complication has an output of �2.5,
thus increasing the risk of death. Using this score, the follow-
ing scenarios would be examples of a positive Heart Brain
346-7 Score: All adults with altered mental status and cardiac
complication, age > 37 with cardiac complication, age > 47
with altered mental status, and all adults ages > 67. The dis-
tribution of the Heart-Brain 346-7 Score in the derivation
cohort is shown in Supplementary Figure 1.

The performance of the Heart-Brain Score was assessed in
the derivation cohort. The sensitivity was 82% (95% CI: 66–
92%), specificity 80% (95% CI: 77-83%), and the area under the
receiver operating characteristic curve (AUC ROC) was 0.81
(95% CI: 0.74-0.87). The positive predictive value (PPV) was 17%
(12-23%) and the negative predictive value (NPV) was 99% (98-
99%). A Heart Brain 346-7 Score greater than the cut-off point
has an odds ratio of 18 (7.8-40) for inpatient or 1-year mortality
(Table 3).

Table 2. Final regression of the Heart-Brain 346-7 score determined from the derivation cohort using Stepwise Akaike Information
Criterion (AIC) with backward model selection, calibrated with Firth logistic regression to an optimized bet cut-point of -2.9.

Coefficient Standard error Z P value 95% Confidence interval

Age 0.0528 0.00989 5.34 0.00 0.0334 to 0.0722
Altered mental status 1.11 0.371 2.93 0.003 0.369 to 1.86
Cardiac complications 1.64 0.399 4.10 0.000 0.855 to 2.42
Constant �6.53 0.682 �9.57 0.000 �7.87 to �5.19

Table 3. Performance of the Heart-Brain 346-7 score in the derivation cohort to predict inpatient death or 1-year mortality.

Heart-Brain 346-7 Score positive (n) Heart-Brain 346-7 Score negative (n) Total (n)

Inpatient or 1-year mortality (n) 31 7 38
No mortality (n) 155 618 773
Total (n) 186 625 811

Sensitivity Specificity PPV NPV OR AUC ROC
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95%CI)

82% 80% 17% 99% 18 0.81
(66–92%) (77–83%) (12-23%) (98–99%) (7.8–40) (0.71-0.87)

CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; OR: odds ratio; AUC ROC: area under curve for
receiver operating characteristic curve.
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Comparing the Heart Brain 346-7 score to the Charlson
Comorbidity Index in the derivation cohort

We compared the performance of the Heart Brain 346-7 Score
to a commonly used prognostic tool, the Charlson Comorbidity
Index. The Charlson Comorbidity Index is validated for predict-
ing 1-year or in-hospital mortality [26,27]. The Charlson
Comorbidity Index was easily obtainable with retrospective,
EMR-based data (e.g., ICD-9 or ICD-10 codes) [26]. We deter-
mined the cut-off of a Charlson Comorbidity Index of 2 has the
highest area under the ROC curve to predict inpatient or 1-year
death in this cohort. 791 patients in the derivation cohort have
a Charlson Comorbidity Index of 2. The Charlson Comorbidity
Index of 2 was associated with a sensitivity was 25% (95% CI:
12–42%), specificity 96% (95% CI: 94–97%), PPV 21% (10-36%),
and NPV 96% (95–98%). A Charlson Comorbidity Index of 2 has
an odds ratio of 7.1 (3.1–16) for the combined outcome meas-
ure. The Heart Brain 346-7 Score was superior to a Charlson
Comorbidity Index of 2 for sensitivity (P< 0.0001), NPV
(P¼ 0.003), and diagnostic odds ratio (P< 0.001) (Table 3). The
Heart Brain 346-7 Score was inferior to the Charlson
Comorbidity Index for specificity (P< 0.0001) and similar in PPV
(P¼ 0.51) (Figure 1).

Heart Brain 346-7 score performance in the validation cohort

In the validation cohort of 462 patients, 19 (4.1%) experi-
enced the combined inpatient death or death within 1 year
of CO poisoning. The Heart-Brain 346-7 Score was able to be
calculated in 431 patients. Due to missing retrospective chart
review data, the Heart-Brain 346-7 Score could not be calcu-
lated in one survivor of inpatient hospitalization who died
within 1 year and 30 patients who survived to 1 year and
thus were not included in the analysis. One hundred forty-
three of the 431 patients had a positive Heart-Brain 346-7
Score (33%). Of those 143 patients with a positive Heart-
Brain 346-7 Score, 13 (9.1%) had the combined outcome of
inpatient or 1-year mortality. Patients with a negative Heart-
Brain 346-7 Score (5 of 288) had a 1.7% combined outcome.
The distribution of the Heart-Brain 346-7 Score in the valid-
ation cohort is shown in Supplementary Figure 2. The per-
formance of the score in the validation cohort consisted the
following: sensitivity 72% (95% CI: 47–90%), specificity 69%
(95% CI 64–73%), PPV 9.0% (95% CI: 5.0–15%), NPV 98%
(95% CI: 96–99%), odds ratio 5.7 (95% CI 2.0–16), and AUC
ROC 0.70 (95% CI 60%–81%) (Table 4). Twenty-seven
inpatient survivors died by 3 years (5.9%).

As a sensitivity analysis, we evaluated the performance of
the Heart Brain 346-7 score on acute, 1-year, and 3-year mor-
tality separately in the validation cohort. We censored acute
mortality when evaluating 1-year and 3-year mortality. When
evaluating for inpatient mortality alone, the Heart-Brain 346-7
Score performed similarly as combined acute and one-year
mortality, sensitivity 100% (63–100%), specificity 68% (63–
73%), PPV 5.6% (2.5–11%), NPV 100% (99-100%)
(Supplementary Table 2). When evaluating for 1-year mortality,
the Heart-Brain 346-7 Score had higher specificity while retain-
ing high NPV compared to the combined outcome, sensitivity
50% (19–81%), specificity 97% (95–99%), PPV 29% (10–56%),
NPV 99% (97–100%) (Supplementary Table 3). When evaluat-
ing for three-year mortality alone, the Heart-Brain 346-7 Score
had higher specificity and PPV while retaining high NPV com-
pared to the combined outcome, sensitivity 65% (44–83%),
specificity 100% (99–100%), PPV 100% (81–100%), NPV 98%
(96–99%) (Supplementary Table 4).

Charlson Comorbidity Index performance in the
validation cohort

We compared the performance of the Heart Brain 346-7
Score in the validation cohort to the Charlson Comorbidity

Figure 1. Comparison of the Heart Brain 346-7 Score with the Charlson
Comorbidity Index of 2 in the derivation cohort. A Charlson Comorbidity Index
of 2 has the highest performance to predict inpatient or 1-year death in this
cohort. The sensitivity, specificity, negative predictive value, positive predictive
value expressed in percentage and odds ratio expressed as unitless.
PPV¼ positive predictive value: NPV¼ negative predictive value; or¼ diagnos-
tic odds ratio. � ¼ P value < 0.01.

Table 4. Performance of the Heart-Brain 346-7 score in the validation cohort to predict inpatient death or 1-year mortality.

Heart-Brain 346-7 Score positive (n) Heart-Brain 346-7 Score negative (n) Total (n)

Inpatient or 1-year mortality (n) 13 5 18
No mortality (n) 130 283 413
Total (n) 143 288 431

Sensitivity Specificity PPV NPV OR AUC ROC
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95%CI)

72% 69% 9.0% 98% 5.7 0.70
(47-90%) (64–73%) (5.0–15%) (96–99%) (2.0–16) (0.60–0.81)

CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; OR: odds ratio; AUC ROC: area under curve for receiver
operating characteristic curve.
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Index. We determined the Charlson Comorbidity Index for
431 patients. We determined the cut-off of Charlson
Comorbidity Index of 2 has the highest area under the ROC
curve to predict inpatient or 1-year death. The Charlson
Comorbidity Index of 2 had the following performance: sen-
sitivity 39% (95% CI: 16–62%), specificity 85% (95% CI: 82–
89%), PPV 10% (95% CI: 4-20%), NPV 97% (95% CI: 95–98%),
and odds ratio of 5.74. The Heart Brain 346-7 Score was
superior to a Charlson Comorbidity Index of 2 for sensitivity
(P< 0.05) and odds ratio (P< 0.02) (Figure 2), similar for PPV
(P¼ 0.81) and NPV (P¼ 0.29), and inferior for specificity
(P< 0.001) (Figure 2).

Discussion

We developed a novel mortality prediction score utilizing
machine learning termed the Heart-Brain 346-7 Score. This
score utilizes altered mental status, age, and cardiac compli-
cations, to predict inpatient or 1-year mortality. The score
performed similarly across two different derivation and valid-
ation populations. The Heart-Brain Score performed “good”
in the derivation cohort and “fair” in the validation cohort
when examining the ROC curve score [28,29]. Diagnostic
tools generated from machine learning have limitations in
real-world validation [30,31]. The similar performance of the
Heart-Brain 346-7 Score in a separate, real-world data valid-
ation cohort demonstrates its potential usefulness for an
artificial intelligence-derived diagnostic tool. We also demon-
strated the score is a useful tool when assessing acute,
1-year, and 3-year mortality independently (not acute and
long-term mortality combined) in the derivation cohort.
While the negative predictive value is high and the positive
predictive value is low, one would potentially accept this

level of performance as this is a tool to guide triage, obser-
vation, and follow-up decisions.

Both derivation and validation cohorts enrolled diverse
patients with varying age, race, and hospital dispositions.
The validation cohort was older, more male-dominant, and
had more Caucasians compared to the derivation cohort. The
validation cohort had more severe CO poisoning patients
with a higher proportion of outside hospital transfer, hospital
admission, ICU admission. Another critical difference between
the cohorts was whether they received hyperbaric oxygen
therapy. Timely administration of HBOT is associated with
improved acute and inpatient mortality [4]. We excluded
patients who received HBOT in the derivation cohort due to
this known effect in the cohort [4]. The addition of patients
who eventual received hyperbaric oxygen therapy could fac-
tor into the lower sensitivity and specificity of the Heart-
Brain 346-7 score in the validation cohort. In both cohorts,
the Heart-Brain 346-7 score had a high negative predictive
value, which speaks to this unique score to differentiate CO
poisoning patients at low vs. high risk.

The Heart-Brain-346-7 score has advantages over other
validated scores, albeit in different populations. The poison
severity score (PSS) is a 5-grade severity grading system
based in 12 organ systems with features requiring laboratory
values (e.g., musculoskeletal assessment requires measure-
ment of creatine kinase activity) [13,32]. The sequential organ
failure assessment (SOFA) and the Acute Physiology and
Chronic Health Disease Classification System II (APACHE-II)
score predicts ICU mortality using laboratory results and clin-
ical data [14,15,33]. The Heart-Brain 346-7 score does not
require laboratory results that are necessary for the PSS,
APACHE-II, and SOFA [15,33]. The Charlson Comorbidity
Index was developed for inpatients to predict long-term
mortality [16]. Co-morbidities from ICD-9 codes are prerequi-
sites for the Charlson Comorbidity Index [16,34]. This is not
readily available at clinical presentation when many CO-pois-
oned patients present with acute mental status changes and
have non-reliable histories. The Charlson Comorbidity Index
is also not validated in CO poisoning [16]. In contrast, the
Heart Brain 346-7 Score is specifically designed for CO poi-
soning patients. In this study, we demonstrated that the
Heart-Brain-346-7 score is superior to the Charlson
Comorbidity Index in terms of sensitivity and odds ratio.
Finally, the Heart Brain 346-7 score is more easily imple-
mented due to its simplicity similar to other mortality predic-
tion scores [35,36]. The Heart Brain 346-7 only requires three
clinical inputs that should be readily available to even a tri-
aging initial provider without needing laboratory criteria and
thus has the potential to have widespread use.

The Heart Brain 346-7 Score utilizes age, cardiac complica-
tion, and altered mental status as the main mortality predic-
tors. Heart-Brain Score specifically defines age cutoffs of less
than 37, 37 to 47, and more than 67 years old for mortality
risk that may become more accepted with further validation.
Additionally, the score suggests cardiac and neurological
involvement in CO poisoning correlates with poor outcomes.
Prior investigation has similar findings. For a 1mg/m3
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Figure 2. Comparison of the Heart Brain 346-7 Score with the Charlson Index
of 2 in the validation cohort. A Charlson Comorbidity Index of 2 has the highest
performance to predict inpatient or 1-year death in this cohort. The sensitivity,
specificity, negative predictive value, positive predictive value expressed in per-
centage and odds ratio expressed as unitless. PPV: positive predictive value;
NPV: negative predictive value; or : diagnostic odds ratio. �: P value < 0.01.
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concentration on the present day versus the previous day,
there was a significant increase in daily mortality from car-
diovascular disease, coronary artery disease, and stroke [37].
A low initial Glasgow Coma Scale is associated with delayed
neurological sequelae [38]. Additionally, CO poisoning mor-
tality proportionally correlates with age and peaks in patients
older than 80-years old [39]. However, age may be confound-
ing as it is correlated with poorer cardiovascular health and
neurological comorbidities [40,41]. Nevertheless, it suggests
that laboratory values such as carboxyhemoglobin level, a
well-established test for CO poisoning, may not have a sim-
ple linear relationship with mortality.

Rose et al. [4] found a significant impact of receiving
HBOT on mortality, we could not derive the score from those
patients that received hyperbaric oxygen therapy in the der-
ivation cohort. To make the score have broader generalizabil-
ity in all patients presenting to the emergency department
with CO poisoning, the validation cohort included patients
who would and would not receive hyperbaric oxygen ther-
apy. This could have impacted the performance of the score.
The Heart Brain 346-7 Score differentiates only mortality risk
with limited stratification. Thus, it would be valuable as a
screening mortality tool rather than a sophisticated mortality
prognosticator. Significant morbidities of CO poisoning stem
from neurocognitive deficits [11,12]. We did not assess neu-
rocognitive impact, in regard to survivor function or health-
care utilization. The score was developed and validated in a
state-wide health system. This could diminish global applic-
ability of the score. We did not record intention on patients
due to lack of reliable data. Intentional poisonings have
been reported to have higher mortality than non-intentional
poisonings [3,42].

Conclusions

We developed and validated a simple scoring system to risk
stratify carbon monoxide-poisoned patients. Further valid-
ation of this score at other sites would help in evaluating its
performance. With further validation, Heart-Brain 346-7
scores could be used to triage high-risk carbon monoxide-
poisoned patients at initial presentation and help identify
high-risk survivors upon hospital discharge.
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