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aSchool of Environmental and Biological Engineering, nanjing University of Science & Technology, nanjing, China; bDepartment of Emergency 
Medicine, nanjing Drum Tower Hospital, The affiliated Hospital of nanjing University Medical School, nanjing, China; cDepartment of 
Emergency Medicine, the affiliated Suqian Hospital of xuzhou Medical University, Suqian, China

ABSTRACT
Introduction:  Delayed neurological sequelae is a common complication following carbon monoxide 
poisoning, which significantly affects the quality of life of patients with the condition. We aimed to 
develop a machine learning-based prediction model to predict the frequency of delayed neurological 
sequelae in patients with carbon monoxide poisoning.
Methods:  a single-center retrospective analysis was conducted in an emergency department from 
January 01, 2018, to December 31, 2023. We analyzed data from patients with carbon monoxide 
poisoning, which were divided into training and test sets. We developed and evaluated sixteen machine 
learning models, using accuracy, sensitivity, specificity, and other relevant metrics. Threshold adjustments 
were performed to determine the most accurate model for predicting patients with carbon monoxide 
poisoning at risk of delayed neurological sequelae.
Results: a total of 360 patients with carbon monoxide poisoning were investigated in the present study, 
of whom 103 (28.6%) were diagnosed with delayed neurological sequelae, and two (0.6%) died. after 
threshold adjustment, the synthetic minority oversampling technique-random forest model demonstrated 
superior performance with an area under the receiver operating characteristic curve of 0.89 and an 
accuracy of 0.83. The sensitivity and specificity of the model were 0.9 and 0.8, respectively.
Discussion:  The study developed a machine learning-based synthetic minority oversampling 
technique-random forest model to predict delayed neurological sequelae in patients with carbon 
monoxide poisoning, achieving an area under the receiver operating characteristic curve of 0.89. This 
technique was used to handle class imbalance, and shapley additive explanations analysis helped 
explain the model predictions, highlighting important factors such as the Glasgow Coma scale, 
hyperbaric oxygen therapy, kidney function, immune response, liver function, and blood clotting.
Conclusions:  The machine learning-based synthetic minority oversampling technique-random forest 
model developed in this study effectively identifies patients with carbon monoxide poisoning at high 
risk for delayed neurological sequelae.

Introduction

Carbon monoxide poisoning is a major public health issue that 
can cause severe neurological damage or death [1]. in the 
United states (Us), carbon monoxide poisoning accounts for 
approximately 50,000–100,000 emergency department visits 
and 1,500–2,000 fatalities each year [2]. a significant number 
of carbon monoxide poisoning survivors experience delayed 
neurological sequelae, a complication characterized by neuro-
logical, cognitive, and neuropsychiatric impairments resulting 
from brain injury [3]. symptoms of delayed neurological 
sequelae range from mild personality changes to severe cog-
nitive disturbances, emotional instability, language impair-
ments, and focal neurological deficits, emerging days to weeks 
after acute carbon monoxide exposure [3,4]. Delayed neuro-
logical sequelae profoundly affects the quality of life of the 

patients and their families. Currently, several clinical indicators 
and imaging modalities, such as serum neuron-specific enolase 
activity [5], serum netrin-1 concentrations [6], and cranial 
diffusion-weighted magnetic resonance imaging [7], are being 
investigated for predicting delayed neurological sequelae in 
patients with carbon monoxide poisoning. however, the clini-
cal utility of most biomarkers remains limited, as they are not 
widely available, and single indicators often show variability in 
performance across patients, making it difficult to fully reflect 
the complex nature of delayed neurological sequelae.

Machine learning models, which are mathematical or compu-
tational programs designed to identify patterns and make pre-
dictions on unseen datasets, offer a promising alternative [8]. 
Machine learning in healthcare depends on patient data collec-
tion; by organizing these data with specialized tools, algorithms 
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in machine learning can reveal patterns that enhance diagnostic 
accuracy, develop personalized treatment plans, and improve 
outcome predictions for medical professionals. Compared with 
traditional statistical methods, machine learning models are con-
structed by the algorithm based on the data provided, without 
assuming a specific model structure. This flexibility allows 
machine learning to make fewer assumptions about data distri-
bution, making it highly effective for analyzing diverse, unstruc-
tured, or high-dimensional datasets. Consequently, machine 
learning can account for numerous factors with complex rela-
tionships, leading to more accurate outcome predictions [9]. 
Furthermore, machine learning techniques can improve predic-
tion models by detecting complex, multidimensional, non-linear 
patterns in the data [10]. another key advantage is that a 
machine learning model can recognize trends automatically and 
continuously refine its performance over time [11]. These char-
acteristics make machine learning particularly well-suited for 
tasks such as risk stratification, diagnosis and classification, and 
survival predictions in the medical field [12]. emerging evidence 
suggests that machine learning models can improve the accu-
racy of prognosis predictions in poisoning-related conditions. a 
study by Veisani and colleagues [13] demonstrated that a 
machine learning-based model could identify risk factors for 
intentional and unintentional poisoning with an accuracy of 
91.5%. nevertheless, little is known about the role of machine 
learning in predicting delayed neurological sequelae frequency 
in patients with carbon monoxide poisoning. hence, this study 
aims to develop an accurate machine learning model to identify 
patients at risk for delayed neurological sequelae, which can 
potentially enable early intervention.

Methods

Study design and setting

This single-center, retrospective study was conducted in the 
emergency department of suqian hospital of nanjing Drum 

Tower hospital group between January 1, 2018 and December 
31, 2023. The hospital, located in northern China, is a 1,500-bed 
tertiary medical facility with approximately 210,000 annual 
emergency department visits, serving as a primary acute poi-
soning treatment center for both urban and rural areas. all 
adult patients with carbon monoxide poisoning were diag-
nosed based on the following criteria [14]: (1) a clinical history 
of carbon monoxide exposure; (2) the presence of any clinical 
signs or symptoms suggestive of carbon monoxide poisoning; 
and (3) an elevated carboxyhemoglobin level (>3% for 
non-smokers and >5% for smokers or those with unclear 
smoking status). Patients who were less than 18 years old, 
transferred from other hospitals, had incomplete clinical data, 
or were lost to follow-up were excluded from the study (Figure 
1). We previously reported on patients with carbon monoxide 
poisoning hospitalized in our institution, from January 1, 2018, 
to December 31, 2020 [15].

Delayed neurological sequelae is clinically diagnosed 
based on the onset of neuropsychiatric symptoms, such as 
cognitive dysfunction, memory impairment, movement disor-
ders, or focal neurological deficits, occurring within six weeks 
after the acute recovery phase of carbon monoxide poison-
ing [3]. Physicians routinely assessed the neurological deficits 
of the patients during hospitalization. For patients who were 
discharged within six weeks, follow-up telephone interviews 
were conducted to evaluate for delayed neurological 
sequelae. Based on these criteria, patients were categorized 
into two groups: those who developed delayed neurological 
sequelae (delayed neurological sequelae group) and those 
who did not (non-delayed neurological sequelae group).

To develop a machine learning model that could predict 
cases accurately and reliably, we employed the following strat-
egies (Figure 2): (1) fine-grained preprocessing of the dataset, 
(2) the application of various machine learning techniques to 
enhance the model performance, (3) comparisons of different 
machine learning algorithms, (4) performance evaluation using 
multiple metrics, and (5) interpretation of the model output.

Figure 1. Patient selection and classification flow chart.
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Ethics approval and consent to participate

This study was conducted in accordance with the helsinki 
Declaration and Good Clinical Practice standards. it was 
approved by the human Research ethics Committee of the 
affiliated suqian hospital of Xuzhou Medical University (eC 
2021-025). The requirement for written informed consent was 
waived due to the retrospective and anonymized nature of 
the study.

Data collection

Demographic data, clinical characteristics, and laboratory 
parameters were collected at the time of admission and during 
hospitalization. Data collection was performed retrospectively 
by trained investigators using the electronic medical record 
system and subsequently reviewed by the research staff. These 
collected data included: age, gender, co-morbidities (hyperten-
sion, diabetes mellitus, coronary artery disease, and chronic 
obstructive pulmonary disease), acute Physiology and Chronic 
health evaluation ii (aPaChe ii) scores, Glasgow Coma scale 
(GCs), heart rate, respiration rate, systolic blood pressure, dia-
stolic blood pressure, mean arterial pressure, temperature, 
white blood cell count, neutrophil percentage, lymphocyte 
percentage, neutrophil-to-lymphocyte ratio (calculated by 
dividing the neutrophil count by the lymphocyte count), 
hemoglobin concentration, hematocrit, platelet count, red 
blood cell distribution width, prothrombin time, international 

normalized ratio, activated partial thromboplastin time, alanine 
aminotransferase activity, aspartate aminotransferase activity, 
total bilirubin concentration, direct bilirubin concentration, 
albumin concentration, globulin concentration, serum creati-
nine concentration, blood urea nitrogen concentration, uric 
acid concentration, estimated glomerular filtration rate (eGFR), 
ph, PaCo2, Pao2, PaCo2/Fio2 ratio, serum lactate concentra-
tion, and blood glucose concentration). interventions during 
hospitalization, including high-flow nasal cannula therapy, 
invasive mechanical ventilation, and hyperbaric oxygen ther-
apy, were also recorded.

Software and packages used

The toolkits used for machine learning modeling and visualiza-
tion were derived from Python 3.12.2 (https://www.Python.org/) 
and R 4.4.1 (https://www.R-project.org/). The Python libraries uti-
lized included Pandas 2.2.2 (https://pandas.pydata.org/), numpy 
1.26.4 (https://numpy.org/), Matplotlib 3.9.0 (https://matplotlib.
org/), seaborn 0.13.2 (https://seaborn.pydata.org/), pillow 10.3.0 
(https://python-pillow.org/), imbalanced-learn 0.12.3 (https://imbalanced- 
learn.org/stable/), scikit-learn 1.5.0 (https://scikit-learn.org/), 
XGBoost 2.1.0 (https://xgboost.readthedocs.io/en/stable/), 
lightgbm 4.4.0 (https://lightgbm.readthedocs.io/en/latest/), Bayesian- 
optimization 1.4.3 (https://bayesian-optimization.github.io/
Bayesianoptimization/index.html) and shaP (shapley additive 
exPlanations) 0.45.1 (https://shap.readthedocs.io/en/latest/) for 
data analysis, modeling, and visualization. in addition, five R 

Figure 2. Roadmap of the proposed framework for predicting the frequency of delayed neurological sequelae in patients with carbon monoxide poisoning.

https://www.Python.org/
https://www.R-project.org/
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https://matplotlib.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://python-pillow.org/
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https://scikit-learn.org/
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packages were employed for data analysis and visualization: 
Tidyverse 2.0.0 (https://tidyverse.tidyverse.org/), Psych 2.4.6.26 
(https://CRan.R-project.org/package=psych), RColorBrewer 1.1-3 
(https://CRan.R-project.org/package=RColorBrewer), Corrplot 
0.92 (https://github.com/taiyun/corrplot), and Ggstatsplot 0.12.3 
(https://indrajeetpatil.github.io/ggstatsplot/).

Preprocessing

We split the dataset into a training set and a test set in the 
ratio of 8:2 and ensured that the proportion of different cat-
egories in training and test sets remained consistent with the 
initial dataset. We then standardized the numerical-type fea-
tures in training and test sets so that they were distributed 
as a standard normal distribution with mean of zero and a 
standard deviation of 1.

Feature selection

We applied logistic regression with l1 regularization to iden-
tify the 10 most important features. l1 regularization adds 
the l1 norm of feature weights to the loss function, encour-
aging certain feature weights to shrink towards zero [16].

Class imbalance

our dataset exhibited class imbalance, with significantly 
fewer patients developing delayed neurological sequelae 
compared to those who did not. To address this, we applied 
three oversampling techniques: synthetic minority oversampling 
technique, adaptive synthetic sampling, and random over-
sampling to balance the training set. additionally, we trained 
models using the original unbalanced dataset for comparison 
with models trained on the balanced set.

Model selection and hyperparameter optimization

We selected four tree-based models to develop our delayed 
neurological sequelae prediction models: decision tree, ran-
dom forest, extreme gradient boosting, and light gradient 
boosting machine. These models were combined with four res-
ampling strategies, resulting in a total of 16 models. For clarity, 
these models were named as follows, no treatment-decision 
tree, no treatment-random forest, no treatment-extreme gradi-
ent boosting, no treatment-light gradient boosting machine, 
synthetic minority oversampling technique-decision tree, syn-
thetic minority oversampling technique-random forest, syn-
thetic minority oversampling technique-extreme gradient 
boosting, synthetic minority oversampling technique-light gra-
dient boosting machine, adaptive synthetic sampling-decision 
tree, adaptive synthetic sampling-random forest, adaptive syn-
thetic sampling-extreme gradient boosting, adaptive synthetic 
sampling-light gradient boosting machine, random oversampling- 
decision tree, random oversampling-random forest, random 
oversampling-extreme gradient boosting, and random oversampling- 
light gradient boosting machine. We used 10-fold cross- 
validation combined with Bayesian optimization to tune the 
hyperparameters of all models.

Model evaluation and explanation

We selected several metrics to comprehensively evaluate our 
models, including confusion matrix, accuracy, specificity, sensi-
tivity, precision and F1-score. The confusion matrix compared 
the predicted results of the model with the actual class labels 
(Table 1), and other evaluation metrics were derived from it 
(Table 2). additionally, we used receiver operating characteris-
tic curves to visualize the performance of all models. To further 
interpret the outputs of our tree-based models, we employed 
shapley additive explanations, a robust tool for explaining and 
visualize machine learning model outputs [17].

Statistical analyses

all statistical analyses were conducted using sPss version 22.0 
for Windows (sPss inc., Chicago, il, Usa). Continuous variables 
with a normal distribution were presented as mean ± standard 
deviation and compared using the student’s t-test. 
non-normally distributed continuous data were reported as 
medians with interquartile ranges (iQR) and analyzed using the 
Mann-Whitney U test. Categorical variables were expressed as 
numbers and percentages and compared using either the 
chi-square test or Fisher’s exact test, as appropriate. Two-tailed 
P <0.05 was considered statistically significant.

Results

Patient characteristics

a total of 408 patients diagnosed with carbon monoxide 
poisoning were eligible for the study, with 360 patients 
meeting the inclusion criteria (Figures 1 and 3a). The mean 
age of the patients was 54 ± 18 years and 58.6% (211/360) 
were female. The overall frequency of delayed neurological 
sequelae was 28.6% (103/360) with a 28-day mortality rate 

Table 1. Confusion matrix for classification results.

True value

Predicted value

Positive negative

Positive True positive False negative
negative False positive True negative

Rows represent the actual categories, while columns represent the predicted 
categories.

Table 2. Metrics to measure model performance.

Metrics Formula

accuracy
True positive True negative

True positive False positive False n
+

+ + eegative True negative+

Specificity
True negative

True negative False positive+

Precision
True positive

True positive False positive+

Recall 
(sensitivity)

True positive

True positive False negative+

F1-score
2× ×

+
precision recall

precision recall

https://tidyverse.tidyverse.org/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=RColorBrewer
https://github.com/taiyun/corrplot
https://indrajeetpatil.github.io/ggstatsplot/
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of 0.6% (2/360). a comparison of baseline clinical features 
between the delayed neurological sequelae and non-delayed 
neurological sequelae groups is presented in Table 3. 
Patients in the delayed neurological sequelae group had 
significantly higher values for age, aPaChe ii scores, heart 
rate, respiratory rate, white blood cell count, neutrophil per-
centage, neutrophil-to-lymphocyte ratio, red blood cell dis-
tribution width, prothrombin time, activated partial 
thromboplastin time, alanine aminotransferase activity, 
aspartate aminotransferase activity, serum creatinine con-
centration, blood urea nitrogen concentration, serum lactate 

concentration, and blood glucose concentration compared 
to those in the non-delayed neurological sequelae group. 
additionally, the proportion of patients requiring invasive 
mechanical ventilation was markedly higher in the delayed 
neurological sequelae group. Conversely, patients in the 
delayed neurological sequelae group had significantly lower 
values for the proportion of females, Glasgow Coma scale, 
lymphocyte percentage, albumin concentration, globulin 
concentration, eGFR, ph, and Pao2/Fio2 ratio. There was no 
significant difference in the 28-day mortality or length of 
hospital stay between the two groups.

Table 3. Characteristics, management and outcomes of 360 patients with carbon monoxide poisoning with or without delayed neurological sequelae.

Variable all (n = 360)
Delayed neurological 

sequelae group (n = 103)
non-delayed neurological 
sequelae group (n = 257) P value

age (years), mean ± SD 53.7 ± 19.0 59.5 ± 20.3 51.4 ± 17.9 <0.001
Female, n (%) 211 (58.6) 44 (42.7) 167 (65.0) <0.001
Comorbidities, n (%)
 Hypertension 72 (20.0) 27 (26.2) 45 (17.5) 0.06
 Diabetes mellitus 17 (4.7) 8 (7.8) 9 (3.5) 0.09
 Coronary artery disease 15 (4.1) 7 (6.8) 8 (3.1) 0.11
 Chronic obstructive pulmonary disease 13 (3.6) 6 (5.8) 7 (2.7) 0.15
glasgow Coma Scale, mean ± SD 9.6 ± 3.3 6.7 ± 2.3 10.7 ± 3.0 <0.001
aPaCHE ii scores, median (iQR) 12.0 (8.0–17.0) 17.0 (14.0–21.0) 10.0 (7.0–15.0) <0.001
Heart rate (beats/min), mean ± SD 75.6 ± 18.5 81.4 ± 21.7 73.2 ± 16.5 <0.001
Respiration rate (breaths/min), median (iQR) 18.0 (18.0–19.0) 18.0 (18.0–22.0) 18.0 (18.0–18.0) 0.01
Systolic blood pressure (mmHg), mean ± SD 126.5 ± 27.8 126.0 ± 30.1 126.8 ± 26.8 0.83
Diastolic blood pressure (mmHg), mean ± SD 77.4 ± 18.0 79.3 ± 19.9 76.6 ± 17.1 0.49
Mean arterial blood pressure (mmHg), median (iQR) 93.7 (74.1–106.6) 96.7 (70.3–111.7) 93.3 (75.3–104.5) 0.92
Temperature (°C), mean ± SD 36.7 ± 0.5 36.8 ± 0.7 36.7 ± 0.5 0.13
White blood cell count (×109/l), mean ± SD 9.3 ± 4.0 10.9 ± 4.3 8.7 ± 3.7 <0.001
neutrophil  percentage (%), mean ± SD 71.5 ± 14.3 77.8 ± 12.5 69.1 ± 14.4 <0.001
lymphocyte percentage (%), median (iQR) 18.4 (10.9–28.7) 13.0 (7.4–19.2) 21.5 (13.6–31.9) <0.001
neutrophil-to-lymphocyte ratio (×109/l), median (iQR) 4.0 (2.2–7.4) 6.00 (3.8–11.7) 3.3 (1.9–6.0) <0.001
Hemoglobin concentration (g/l), mean ± SD 132.1 ± 22.1 128.1 ± 28.4 133.6 ± 18.8 0.07
Platelets count (×109/l), mean ± SD 213.3 ± 58.7 211.6 ± 60.8 214.0 ± 58.0 0.73
Hematocrit (%), mean ± SD 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.15
Red blood cell distribution width (%), mean ± SD 12.9 ± 1.3 13.2 ± 1.4 12.9 ± 1.3 0.04
Prothrombin time (s), mean ± SD 10.8 ± 1.0 11.0 ± 0.9 10.8 ± 1.0 0.03
activated partial thromboplastin time (s), mean ± SD 25.2 ± 3.6 25.9 ± 3.5 25.0 ± 3.6 0.02
international normalized ratio, mean ± SD 0.9 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.16
Total bilirubin (µmol/l), median (iQR) 10.3 (8.0–14.0) 10.4 (8.0–14.0) 10.1 (8.0–14.0) 0.77
Total bilirubin concentration (mg/dl), median (iQR) 0.6 (0.5–0.8) 0.6 (0.5–0.8) 0.6 (0.5–0.8) 0.67
Direct  bilirubin (µmol/l), mean ± SD 3.3 ± 2.1 3.5 ± 1.9 3.3 ± 2.3 0.27
Direct  bilirubin concentration (mg/dl), mean ± SD 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.33
alanine aminotransferase activity (U/l), median (iQR) 19.8 (14.0–27.1) 22.0 (16.2–37.9) 19.0 (13.5–26.0) 0.02
aspartate aminotransferase activity (U/l), median (iQR) 23.0 (17.3–30.0) 28.0 (21.0–47.0) 21.6 (17.0–27.7) <0.001
albumin concentration (g/l), mean ± SD 40.7 ± 4.7 38.9 ± 4.6 41.4 ± 4.6 <0.001
globulin concentration (g/l), mean ± SD 26.0 ± 5.6 25.1 ± 5.4 26.4 ± 5.6 0.04
Serum creatinine (µmol/l), mean ± SD 63.8 ± 18.8 76.8 ± 22.3 58.6 ± 14.4 <0.001
Serum creatinine concentration (mg/dl), mean ± SD 0.7 ± 0.2 0.9 ± 0.3 0.7 ± 0.2 <0.001
Blood urea nitrogen (mmol/l), mean ± SD 6.1 ± 2.2 7.0 ± 2.5 5.8 ± 2.0 <0.001
Blood urea nitrogen concentration (mg/dl), mean ± SD 17.2 ± 6.3 19.6 ± 7.0 16.2 ± 5.7 <0.001
Uric acid (µmol/l), mean ± SD 289.3 ± 107.6 301.7 ± 111.9 284.3 ± 105.6 0.17
Uric acid concentration (mg/dl), mean ± SD 4.9 ± 1.8 5.1 ± 1.9 4.8 ± 1.8 0.16
egFR (ml/min/1.73m2), mean ± SD 101.5 (86.3–119.4) 90.2 (78.3–102.2) 107.5 (90.6–123.3) <0.001
Serum lactate concentration (mmol/l), median (iQR) 2.0 (1.5–2.9) 2.4 (1.6–3.7) 1.8 (1.4–2.6) <0.001
pH (mean ± SD) 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 0.01
Pao2 (mmHg), median (iQR) 88.2 (74.0–103.1) 85.8 (72.4–105.9) 90.4 (76.1–103.0) 0.262
PaCo2, (mmHg), mean ± SD 36.7 ± 6.0 36.9 ± 6.7 36.7 ± 5.7 0.76
Pao2/Fio2 ratio (mmHg), mean ± SD 205.6 ± 53.4 191.8 ± 53.3 211.1 ± 52.5 0.02
Blood glucose (mmol/l), mean ± SD 7.2 ± 3.2 8.2 ± 4.6 6.8 ± 2.3 0.03
Blood glucose concentration (mg/dl), mean ± SD 130.0 ± 57.7 148.3 ± 83.4 122.6 ± 41.3 0.01
interventions n (%)
 High-flow nasal cannula 304 (84.4) 89 (86.4) 215 (83.7) 0.52
 invasive mechanical ventilation 8 (2.2) 8 (7.8) 0 (0) <0.001
 Hyperbaric oxygen therapy 229 (63.6) 63 (61.2) 166 (64.6) 0.54
outcomes
 28-day mortality n (%) 2 (0.5) 2 (1.9) 0 (0) 0.08
 Hospital stays (days), median (iQR) 6 (4–9) 6 (3–9) 6 (5–9) 0.13

aPaCHE ii, acute physiology and chronic health evaluation ii; egFR, estimated glomerular filtration rate; iQR, interquartile range; SD, standard deviation
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Feature selection

logistic regression not only identified the 10 most important 
features, but also provided coefficients for these features 
(Figure 3B). additionally, we observed no strong correlation 
among them (Figure 3C). This indicated that the selected fea-
tures each contribute unique information, which was crucial 
for constructing a robust model.

Model selection

We optimized the hyperparameters of all models after bal-
ancing the training set. The optimal hyperparameters for 
each model are detailed in supplemental Table s1. We then 
conducted a comprehensive performance assessment of all 
models. as shown in supplemental Figure s1, all 16 models 
demonstrated commendable accuracy on the training set, 
and the choice of balancing strategy did not significantly 
impact their performance. however, notable discrepancies 

emerged in the performance when evaluating the test set 
(Figures 3D and 4, Table 3). among the models, synthetic 
minority oversampling technique-decision tree, synthetic 
minority oversampling technique-random forest, and adap-
tive synthetic sampling-random forest models exhibited 
superior predictive capabilities for identifying patients at risk 
of delayed neurological sequelae. Receiver operating charac-
teristic curves for these three models are plotted in Figure 
5a, followed by a detailed analysis.

Most classifiers use a default threshold of 0.5 for predic-
tive probability. a sample with a probability below 0.5 is clas-
sified as negative, while a probability above 0.5 indicates a 
positive classification. We adjusted the threshold for these 
three models to improve prediction accuracy for delayed 
neurological sequelae. To identify the optimal threshold, we 
varied the threshold between 0 and 0.5 and used the F1-score 
to identify the optimal threshold. Figure 5B shows the 
F1-score for the three models across different thresholds. The 
synthetic minority oversampling technique-random forest 

Figure 3. Data distribution, features selected, heat map of correlation between features selected and the accuracy of 16 models in the test set. (a) The number 
of carbon monoxide patients with or without delayed neurological sequelae in the training set and test set. (B) The significance of the 10 selected demographic, 
clinical and intervention features. The length of the bars and the absolute value of the coefficients reflect the importance of each feature. (C) The strength of 
correlations between the 10 selected demographic, clinical and intervention features. The size of the pie charts, magnitude of values, and intensity of colors 
indicate the degree of correlation. Significance levels are marked with symbols: * P <0.05; ** P <0.005; *** P <0.001. (D) The accuracy of the 16 models in the test 
set (the outer circle) and the average accuracy of the models using each of the four balancing methods (box plot in the center).

https://doi.org/10.1080/15563650.2024.2437113
https://doi.org/10.1080/15563650.2024.2437113
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model achieved optimal performance with a threshold set to 
approximately 0.485.

after threshold adjustment, the synthetic minority oversam-
pling technique-random forest model achieved an accuracy of 
0.83, sensitivity of 0.9, and specificity of 0.8, reflecting signifi-
cant improvements over its pre-adjustment performance. The 
confusion matrix for this model is presented in Figure 5C. 
Consequently, we selected the synthetic minority oversam-
pling technique-random forest model as our final model.

Model explanation

The random forest classifier, which comprises numerous deci-
sion trees, can be complex to interpret. To address this chal-
lenge, we used shapley additive explanations to clarify the 
prediction mechanism of the synthetic minority oversampling 
technique-random forest model. as shown in Figure 5D, high 
values for six specific predictors (GCs, eGFR, lymphocyte 

percentage, hyperbaric oxygen therapy, female, and chronic 
obstructive pulmonary disease) were associated with nega-
tive shapley additive explanations values, indicating that 
higher value for these features was linked to lower likelihood 
of developing delayed neurological sequelae. in contrast, fea-
tures such as serum creatinine concentration, aspartate ami-
notransferase activity, blood glucose concentration, and 
activated partial thromboplastin time exhibited positive shap-
ley additive explanations values at higher values, suggesting 
that elevated values for these predictors were associated 
with increased risk of delayed neurological sequelae.

Discussion

early prediction of neurological prognosis in patients with car-
bon monoxide poisoning can help identify high-risk individuals, 
allowing timely interventions and better-informed care deci-
sions, potentially improving long-term outcomes and reducing 

Figure 4. Confusion matrices of 16 machine learning models.
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healthcare costs. in the present study, we developed a machine 
learning-based model to predict delayed neurological sequelae 
in patients with carbon monoxide poisoning. our results indi-
cated that the synthetic minority oversampling 
technique-random forest model demonstrated robust predic-
tive value for predicting delayed neurological sequelae, with an 
area under the receiver operating characteristic curve of 0.89.

synthetic minority oversampling technique, an advanced 
oversampling technique, performs interpolation among 
neighboring minority class instances to address class imbal-
ance [18,19]. By applying the synthetic minority oversampling 
technique to the dataset, we reduced bias toward the major-
ity class, thus enhancing performance for the minority class. 
Random forest, a popular ensemble learning algorithm, builds 
a “forest” of decision trees and aggregates their results to 
produce a final prediction. Known for its ease of implemen-
tation and low computational cost, random forest consis-
tently delivers strong performance in real-world applications 
and is recognized as a leading method in ensemble learn-
ing [20].

Researchers have investigated various clinical indicators to 
assess the risk of delayed neurological sequelae in patients 
with carbon monoxide poisoning at an early stage, such as 
serum lactate concentrations [21] and QT interval prolonga-
tion [22]. however, these indicators demonstrated signifi-
cantly lower area under the receiver operating characteristic 
curve values, compared to the machine learning-based 
approach employed in the present study. Consistent with 
previous reports, our study demonstrated that machine learn-
ing models can rapidly analyze extensive data from the elec-
tronic health records of patients with carbon monoxide 
poisoning, including demographic and clinical characteristics, 
to predict which patients are at high risk of developing 
delayed neurological sequelae. This may allow for timely 
treatment and management recommendations. Furthermore, 
machine learning models can automatically identify underly-
ing patterns in data, which may align with clinical judgment 
or reveal previously unknown patterns.

in the present study, we used shapley additive explanations to 
elucidate the internal mechanisms of the synthetic minority 

Figure 5. Performance evaluation and feature importance analysis of the synthetic minority oversampling technique-random Forest model. (a) Receiver operating 
characteristic curves for three machine learning models (synthetic minority oversampling technique-decision tree, synthetic minority oversampling technique-random 
Forest, and adaptive synthetic sampling-random Forest) tested on the same cohort. (B) Threshold adjustment curve for three machine learning models (synthetic 
minority oversampling technique-decision tree, synthetic minority oversampling technique-random Forest, and adaptive synthetic sampling-random Forest), illus-
trating the change in F1-score across 1,000 evenly spaced threshold values between 0 and 0.5. (C) Confusion matrix of the synthetic minority oversampling 
technique-random Forest model after threshold adjustment. (D) Shapley additive explanations bee swarm plot showing feature importance for the synthetic 
minority oversampling technique-random Forest model. Features are ranked by the average absolute shapley additive explanations value. Each point represents 
a sample, with jitter added for dispersion where samples share the same value. The x-axis represents shapley additive explanations values, with positive values 
indicating a prediction of delayed neurological sequelae and negative values indicating a prediction of non-delayed neurological sequelae.
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oversampling technique-random forest model (Figure 5D). This 
analysis underscored the importance of the Glasgow Coma scale 
and hyperbaric oxygen therapy in predicting delayed neurological 
sequelae, aligning with findings from other studies [23,24]. it is 
worth noting that the proportion of patients receiving hyperbaric 
oxygen therapy was similar between the delayed neurological 
sequelae and non-delayed neurological sequelae groups in our 
study, suggesting that hyperbaric oxygen therapy alone may not 
be a significant predictor of delayed neurological sequelae. This 
highlights the machine learning models likely rely on a broader 
range of variables, not just hyperbaric oxygen therapy, for accu-
rate predictions. additionally, the model identified that kidney 
function as an important factor in delayed neurological sequelae 
development, with higher serum creatinine concentration and 
lower eGFR increasing the likelihood of delayed neurological 
sequelae. The results also revealed associations between lower 
lymphocyte percentage, higher alanine aminotransferase activity 
and blood glucose concentration, and prolonged activated partial 
thromboplastin time with a higher risk of delayed neurological 
sequelae in patients with carbon monoxide poisoning. These find-
ings suggest that delayed neurological sequelae are associated 
with multiple functional impairments, including immune system 
dysfunction, liver function abnormalities, glucose abnormalities, 
and endogenous coagulation disturbances. in addition, our study 
indicated a potential gender difference in delayed neurological 
sequelae risk, with female patients with carbon monoxide poison-
ing exhibiting a lower frequency of delayed neurological sequelae, 
possibly due to higher hypoxia tolerance [25].

The present study has several limitations that must be 
acknowledged. First, this is a single-center study with a rela-
tively small sample size and no external validation. Therefore, 
future works with larger sample sizes and across multiple cen-
tres are needed to further assess the generalizability of the 
model across different populations and clinical settings. 
second, there is no universally accepted set of diagnostic cri-
teria for delayed neurological sequelae following carbon mon-
oxide poisoning. Therefore, the variations in how delayed 
neurological sequelae is defined may affect the generalizability 
of our results. Future research is needed to help standardize 
definitions and enhance comparability across studies. Third, 
previous study has suggested that patients with persistent 
neurological symptoms after carbon monoxide poisoning may 
be at higher risk of developing delayed neurological sequelae 
[26]. in the present study, we did not distinguish between per-
sistent neurological symptoms and delayed neurological 
sequelae in the included population. This lack of differentiation 
may affect the interpretation of our predictive model for 
delayed neurological sequelae. Future analyses that separate 
persistent neurological symptoms and delayed neurological 
sequelae may lead to changes in the predictive performance 
of the model and improve the understanding of factors specif-
ically contributing to delayed neurological sequelae develop-
ment. Finally, we did not include clinical parameters that were 
missing in more than half of the patients, such as troponin 
concentration, duration of carbon monoxide exposure, smok-
ing status, and interval from exposure termination to emer-
gency department arrival since such missing data could impact 
the machine learning model in several ways, such as reduced 
model performance and algorithm instability

in conclusion, our study demonstrated that the synthetic 
minority oversampling technique-random forest model can 
accurately predict delayed neurological sequelae in patients 
with carbon monoxide poisoning. This model could assist 
clinical toxicologists in identifying patients at risk for person-
alized management plans.
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