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IMPORTANCE Previous meta-analyses suggest that fluoride exposure is adversely associated
with children’s IQ scores. An individual’s total fluoride exposure comes primarily from fluoride
in drinking water, food, and beverages.

OBJECTIVE To perform a systematic review and meta-analysis of epidemiological studies
investigating children’s IQ scores and prenatal or postnatal fluoride exposure.

DATA SOURCES BIOSIS, Embase, PsycInfo, PubMed, Scopus, Web of Science, CNKI, and
Wanfang, searched through October 2023.

STUDY SELECTION Studies reporting children’s IQ scores, fluoride exposure, and effect sizes.

DATA EXTRACTION AND SYNTHESIS Data were extracted into the Health Assessment
Workplace Collaborative system. Study quality was evaluated using the OHAT risk-of-bias
tool. Pooled standardized mean differences (SMDs) and regression coefficients were
estimated with random-effects models.

MAIN OUTCOMES AND MEASURES Children’s IQ scores.

RESULTS Of 74 studies included (64 cross-sectional and 10 cohort studies), most were
conducted in China (n = 45); other locations included Canada (n = 3), Denmark (n = 1), India
(n = 12), Iran (n = 4), Mexico (n = 4), New Zealand (n = 1), Pakistan (n = 2), Spain (n = 1), and
Taiwan (n = 1). Fifty-two studies were rated high risk of bias and 22 were rated low risk of bias.
Sixty-four studies reported inverse associations between fluoride exposure measures and
children’s IQ. Analysis of 59 studies with group-level measures of fluoride in drinking water,
dental fluorosis, or other measures of fluoride exposure (47 high risk of bias, 12 low risk of
bias; n = 20 932 children) showed an inverse association between fluoride exposure and IQ
(pooled SMD, −0.45; 95% CI, −0.57 to −0.33; P < .001). In 31 studies reporting fluoride
measured in drinking water, a dose-response association was found between exposed and
reference groups (SMD, −0.15; 95% CI, −0.20 to −0.11; P < .001), and associations remained
inverse when exposed groups were restricted to less than 4 mg/L and less than 2 mg/L;
however, the association was null at less than 1.5 mg/L. In analyses restricted to low
risk-of-bias studies, the association remained inverse when exposure was restricted to less
than 4 mg/L, less than 2 mg/L, and less than 1.5 mg/L fluoride in drinking water. In 20 studies
reporting fluoride measured in urine, there was an inverse dose-response association (SMD,
−0.15; 95% CI, −0.23 to −0.07; P < .001). Associations remained inverse when exposed
groups were restricted to less than 4 mg/L, less than 2 mg/L, and less than 1.5 mg/L fluoride
in urine; the associations held in analyses restricted to the low risk-of-bias studies. Analysis of
13 studies with individual-level measures found an IQ score decrease of 1.63 points (95% CI,
−2.33 to −0.93; P < .001) per 1-mg/L increase in urinary fluoride. Among low risk-of-bias
studies, there was an IQ score decrease of 1.14 points (95% CI, –1.68 to –0.61; P < .001).
Associations remained inverse when stratified by risk of bias, sex, age, outcome assessment
type, country, exposure timing, and exposure matrix.

CONCLUSIONS AND RELEVANCE This systematic review and meta-analysis found inverse
associations and a dose-response association between fluoride measurements in urine and
drinking water and children’s IQ across the large multicountry epidemiological literature.
There were limited data and uncertainty in the dose-response association between fluoride
exposure and children’s IQ when fluoride exposure was estimated by drinking water alone at
concentrations less than 1.5 mg/L. These findings may inform future comprehensive public
health risk-benefit assessments of fluoride exposures.
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F luoride from natural sources occurs in some commu-
nity water systems (CWSs), and in the United States and
some other countries, fluoride is added to public drink-

ing water systems or salt for the prevention of tooth decay.
For CWSs that add fluoride, the US Public Health Service
recommends a fluoride concentration of 0.7 mg/L, the US
Environmental Protection Agency’s (EPA’s) enforceable and
nonenforceable standards for fluoride in drinking water are
4.0 mg/L and 2.0 mg/L,1 and the World Health Organization’s
(WHO’s) drinking water quality guideline for fluoride is
1.5 mg/L.2 Water and water-based beverages are the main
source of systemic fluoride intake. In the United States, the
Centers for Disease Control and Prevention (CDC) estimates that
water and processed beverages (eg, soda and juices) provide
approximately 75% of a person’s fluoride intake,3 and EPA es-
timates that 40% to 70% of a person’s fluoride intake comes
from fluoridated drinking water.4 However, an individual’s total
exposure also reflects contributions from fluoride in other
sources, such as food, dental products, industrial emissions,
and pharmaceuticals.4 Accumulating evidence suggests that
fluoride exposure may affect brain development. A 2006 re-
port from the National Research Council (NRC) concluded that
high levels of naturally occurring fluoride in drinking water may
be of concern for neurotoxic effects.5 This finding was largely
based on studies from endemic fluorosis areas in China that
had limitations in study design or methods. Following the NRC
review, studies from an additional 10 countries have been pub-
lished (eFigure 1A in Supplement 1). Previous meta-analyses6-8

found an inverse association between fluoride exposure and
children’s IQ. Since the most recent meta-analysis,8 4 new stud-
ies on exposure to fluoride and children’s IQ have been pub-
lished, including 3 studies9-11 that measured individual-level
maternal and children’s urinary fluoride concentrations.

To incorporate newer evidence and increase transpar-
ency, objectivity, and rigor in the analysis of fluoride
research, we conducted a systematic review and meta-
analysis of studies that provided estimates of group-level and
individual-level fluoride exposure in relation to children’s
IQ scores.

Methods
The search, selection, extraction, and risk-of-bias evaluation
of studies were part of a larger systematic review.12 Brief meth-
ods are outlined herein, with detailed methods available in the
protocol13 and the “Detailed Methods” section of eAppendix
1 in Supplement 1. This study follows the Meta-Analysis of
Observational Studies in Epidemiology (MOOSE) reporting
guidelines. Data analysis was conducted from June 2020 to
January 2024. The most recent analysis update was performed
in January and February 2024.

Systematic Literature Review, Study Selection,
and Data Extraction
Literature searches were conducted in BIOSIS, Embase,
PsycInfo, PubMed, Scopus, Web of Science, CNKI, and
Wanfang. The searches were performed through October 2023

without language restrictions.13 Studies were independently
screened by 2 reviewers against inclusion and exclusion
criteria described in the “Detailed Methods” section of
eAppendix 1 in Supplement 1 and the protocol.13 Data were ex-
tracted from included studies by 1 extractor and verified by a
second extractor into the Health Assessment Workspace
Collaborative (HAWC) system. Data are publicly available and
downloadable (https://hawcproject.org/assessment/405/).

Quality Assessment: Risk of Bias
Quality of individual studies, also called risk of bias, was in-
dependently evaluated by 2 trained assessors following crite-
ria prespecified in the protocol,13 using the National Toxicol-
ogy Program’s or Division of Translational Toxicology’s OHAT
approach.14 Risk-of-bias questions concerning confounding,
exposure characterization, and outcome assessment were con-
sidered key. If not addressed appropriately, these questions
were thought to have the greatest potential impact on the
results.13 The remaining risk-of-bias questions were used to
identify other concerns that may indicate serious risk-of-bias
issues (eg, selection bias, inappropriate statistical analysis). No
study was excluded from the meta-analysis based on con-
cerns for risk of bias; however, subgroup analyses were con-
ducted with and without high risk-of-bias studies (ie, studies
rated probably high risk of bias for ≥2 key risk-of-bias ques-
tions or definitely high risk of bias for any single question) to
assess their potential impact, in terms of magnitude and di-
rection of bias, on the results. Ratings and justification are avail-
able in HAWC (https://hawcproject.org/assessment/405/).

Statistical Analysis
We conducted the following analyses, planned a priori in the
protocol: (1) mean-effects meta-analysis, (2) dose-response
mean-effects meta-analysis, and (3) regression slopes meta-
analysis (detailed methods are provided in the “Detailed
Methods” section of eAppendix 1 in Supplement 1).

Key Points
Question Is fluoride exposure associated with children’s IQ
scores?

Findings Despite differences in exposure and outcome measures
and risk of bias across studies, and when using group-level and
individual-level exposure estimates, this systematic review and
meta-analysis of 74 cross-sectional and prospective cohort studies
found significant inverse associations between fluoride exposure
and children’s IQ scores. For fluoride measured in water,
associations remained inverse when exposed groups were
restricted to less than 4 mg/L or less than 2 mg/L but not when
restricted to less than 1.5 mg/L; for fluoride measured in urine,
associations remained inverse at less than 4 mg/L, less than 2
mg/L, and less than 1.5 mg/L; and among the subset of low
risk-of-bias studies, there were inverse associations when exposed
groups were restricted to less than 4 mg/L, less than 2 mg/L, and
less than 1.5 mg/L for analyses of fluoride measured both in water
and in urine.

Meaning This comprehensive meta-analysis may inform future
risk-benefit assessments of the use of fluoride in children’s oral
health.
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The mean-effects meta-analysis included studies that re-
ported mean IQ scores and group-level exposures for at least
1 exposed group and 1 reference group. The effect estimates
were standardized mean differences (SMDs) for heteroscedas-
tic population variances.15-17 SMDs were calculated from the
difference in mean IQ scores between an exposed group and
a reference group. If an individual study reported mean IQ
scores for multiple exposure groups, the highest exposure
group was considered the exposed group and the lowest ex-
posure group was considered the reference group. A sensitiv-
ity analysis was performed to evaluate the impact of all expo-
sure groups combined compared with a reference group.
Pooled SMDs and 95% CIs were estimated using random-
effects models. To determine whether the data support an ex-
posure-response association, we conducted a dose-response
mean-effects meta-analysis that included studies from the
mean-effects meta-analysis and used a 1-step approach as de-
scribed in the protocol.13,18-20 A pooled dose-response curve
was estimated using a restricted maximum likelihood estima-
tion method. Potential nonlinear associations were exam-
ined using quadratic terms and restricted cubic splines. Model
comparison was based on the maximum likelihood Akaike in-
formation criterion (AIC).21 To examine associations at lower
fluoride levels, subgroup analyses were restricted to 0 to less
than 4 mg/L (comparable to EPA’s enforceable drinking water
standard for fluoride of ≤4 mg/L), 0 to less than 2 mg/L
(comparable to EPA’s nonenforceable standard for fluoride in
drinking water of ≤2 mg/L), and 0 to less than 1.5 mg/L (com-
parable to WHO’s guideline for fluoride in drinking water of
≤1.5 mg/L).4

The regression slopes meta-analysis included studies that
reported regression slopes to estimate associations between
individual-level fluoride exposures and children’s IQ. Data from
individual studies were pooled using a random-effects model.22

Heterogeneity was assessed by Cochran Q test23 and the
I2 statistic.24 Subgroup analyses stratified studies by risk of bias
(high or low), study location (country), outcome assessment,
exposure matrix (eg, urine, water), sex, and age to further in-
vestigate sources of heterogeneity. An analysis stratified by pre-
natal or postnatal exposure was suggested post hoc. Poten-
tial publication bias was assessed with funnel plots and Egger
tests.25-27 If publication bias was present, trim-and-fill
methods28,29 were used to estimate the number of hypotheti-
cal “missing” studies and predict the impact of the missing
studies on the pooled effect estimate.

Statistical analyses were performed using Stata version 17.0
statistical software (StataCorp LLC).30 The combine, meta esize,
meta set, meta summarize, drmeta, meta funnel, meta bias,
meta trimfill, and metareg packages were used.31

Results
Study Sample
A total of 74 publications (64 cross-sectional studies and 10 pro-
spective cohort studies) met the inclusion criteria, with 65 in-
cluded in the primary analyses and an additional 9 included
in sensitivity analyses (eFigure 1B in Supplement 1; see eTable 2

in Supplement 1 for excluded publications). Characteristics
of the 74 publications and the study-specific effect estimates
used in the meta-analyses are shown in eTable 1 in Supple-
ment 1. Most studies were conducted in China (n = 45); other
locations included Canada (n = 3), Denmark (n = 1), India
(n = 12), Iran (n = 4), Mexico (n = 4), New Zealand (n = 1),
Pakistan (n = 2), Spain (n = 1), and Taiwan (n = 1). No studies
were conducted in the United States. Of these, 59
publications reported mean IQ scores for group-level
exposures10,11,32-95 and 19 reported regression slopes for indi-
vidual-level exposures based on urinary or water fluoride con-
centrations and fluoride intake.9-11,32-38,96-104 Additional
details on study characteristics are provided in the
“Results” section of eAppendix 1 in Supplement 1. Sixty-four
studies reported inverse associations between fluoride expo-
sure measures and children’s IQ. Fifty-two studies were rated
high risk of bias. Twenty-two studies were rated low risk of bias,
with 13 rated low risk of bias across all 7 risk-of-bias domains
and 9 rated low risk of bias in 6 domains and probably high
risk of bias in no more than 1 domain. Results from risk-of-
bias evaluations are presented in eFigure 2 in Supplement 1.
Interactive versions of the figures and risk-of-bias evalua-
tions are available in HAWC (links provided in the “Results”
section of eAppendix 1 in Supplement 1). Further details and
justification about low risk-of-bias studies are presented in
eAppendix 2 in Supplement 1.

Mean-Effects Meta-Analysis
The meta-analysis of 59 studies (47 high risk of bias, 12
low risk of bias; n = 20 932 children) that provided mean IQ
scores showed that, when compared with children exposed
to lower fluoride levels, children exposed to higher fluoride
levels had statistically significantly lower IQ scores
(random-effects pooled SMD, −0.45; 95% CI, −0.57 to −0.33;
P < .001) (Table 1 and Figure 1). There was evidence of high
heterogeneity (I2 = 94%; P < .001; Table 1) and publication
bias (funnel plot and Egger P < .001, Begg P = .03; eFigures 3
and 4 in Supplement 1). Adjusting for possible publication
bias through trim-and-fill analysis supported the statisti-
cally significant inverse association after imputation of 2
additional studies to the right side (adjusted SMD, –0.39;
95% CI, −0.58 to −0.20) or 17 studies to the left side (ad-
justed SMD, –0.63; 95% CI, –0.76 to –0.50) (eFigures 5 and 6
in Supplement 1). Fifty-two of the 59 studies (88%) reported
an inverse association with SMDs ranging from −5.34
(95% CI, −6.34 to −4.34) to −0.04 (95% CI, −0.45 to 0.36)
(Figure 1). Seven studies that did not report inverse associa-
tions reported SMDs ranging from 0.00 (95% CI, −0.25 to
0.25) to 0.43 (95% CI, 0.07 to 0.80).10,32,37,39-42 Three
studies43-45 lacked clear descriptions of their intelligence
assessment methods; however, sensitivity analyses did not
reveal substantial changes in the pooled SMD estimate
when these studies were excluded or when a study103

that reported the cognitive subset of evaluations using
Bayley and McCarthy tests was included (eTable 3 in
Supplement 1).

Among the low risk-of-bias studies,10,11,32-35,37,42,47-50 the
random-effects pooled SMD was −0.19 (95% CI, −0.35 to −0.04;
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P = .01) with high heterogeneity (I2 = 87%) (Table 1; eFigure 7
in Supplement 1) and no evidence of publication bias (funnel
plot and Egger P = .56; eFigures 8 and 9 in Supplement 1).
Among the high risk-of-bias studies, the random-effects pooled
SMD was −0.52 (95% CI, −0.68 to −0.37; P < .001) with high
heterogeneity (I2 = 94%) (Table 1; eFigure 7 in Supplement 1).
There was evidence of publication bias (funnel plot and Egger
P < .001; eFigures 8 and 9 in Supplement 1); the trim-and-fill
analysis had an adjusted pooled SMD of −0.47 (95% CI, −0.72
to −0.23) (eFigures 10 and 11 in Supplement 1).

Subgroup analyses by sex, age, study location, outcome
assessment type, and exposure assessment matrix found in-
verse associations between measures of fluoride exposure and
children’s IQ (Table 1; eFigures 12-16 in Supplement 1). The sub-
group analyses did not explain a large amount of the overall
heterogeneity; however, the degree of heterogeneity was lower
for studies restricted to Iran (I2 = 57%), children aged 10 years
or older (I2 = 71%), and girls (I2 = 78%) (“Results” section of
eAppendix 1 in Supplement 1). The results of the metaregres-
sion models indicate that year of publication and mean age of
children did not explain a large degree of heterogeneity
(“Results” section of eAppendix 1 in Supplement 1).

Dose-Response Mean-Effects Meta-Analysis
The dose-response mean-effects meta-analysis included data
from 38 studies (eTable 1 in Supplement 1). We excluded stud-
ies for which there was evidence that coexposures to arsenic
or iodine might be differential.36,41,44,51-54,105 Results from both
the analysis of 31 studies with group-level fluoride measure-
ments in drinking water (24 high risk of bias, 7 low risk of bias;
n = 12 487 children) and the analysis of 20 studies with group-
level mean urinary fluoride levels (10 high risk of bias, 10 low
risk of bias; n = 9756 children) found that lower children’s IQ
scores were associated with increasing levels of fluoride ex-
posure. Based on the linear models, the mean SMD between
exposed and reference groups was −0.15 (95% CI, −0.20 to
−0.11; P < .001) for water fluoride levels and −0.15 (95% CI,
−0.23 to −0.07; P < .001) for urinary fluoride levels (Table 2;
eTable 4 in Supplement 1). Based on the AIC, the best model
fit was achieved when restricted cubic spline levels were added
to the linear models for drinking water. Given the small dif-
ference in AICs between the different models, and consider-
ations of parsimony and ease of interpretability, the linear
model results were chosen for the purposes of discussion and
are presented in Table 2, although results from all models are

Table 1. Pooled Standardized Mean Differences (SMDs) From Random-Effects Meta-Analyses of the
Association Between Group-Level Measures of Fluoride Exposure and IQ Scores in Children

Analysis Studies, No. SMD (95% CI)

Heterogeneity

P value I2, %
Overall association with IQ 59 −0.45 (−0.57 to −0.33) <.001 94

Subgroup analysis

Risk of bias

Low 12 −0.19 (−0.35 to −0.04) .01 87

High 47 −0.52 (−0.68 to −0.37) <.001 94

Sex

Female 15 −0.45 (−0.65 to −0.25) <.001 78

Male 16 −0.53 (−0.77 to −0.29) <.001 88

Age, y

<10a 14 −0.38 (−0.57 to −0.19) <.001 82

≥10 17 −0.52 (−0.67 to −0.37) <.001 71

Country

China 41 −0.42 (−0.51 to −0.33) <.001 86

India 8 −1.09 (−2.23 to 0.06) <.001 98

Iran 4 −0.68 (−0.99 to −0.38) .08 57

Canada 2 0.01 (−0.14 to 0.16) NA 0

Pakistan 2 0.10 (−0.57 to 0.77) .01 83

New Zealand 1 0.01 (−0.19 to 0.22) NA NA

Taiwan 1 0.10 (−0.10 to 0.29) NA NA

Assessment type

CRT-RC 31 −0.35 (−0.45 to −0.25) <.001 85

Non–CRT-RC tests 28 −0.59 (−0.88 to −0.29) <.001 96

Raven tests 12 −0.72 (−1.48 to 0.04) <.001 99

Other tests 16 −0.52 (−0.72 to −0.32) <.001 87

Exposure matrix

Water fluoride 34 −0.35 (−0.45 to −0.24) <.001 87

Dental fluorosis 9 −0.86 (−1.91 to 0.19) .11 99

Other exposuresb 16 −0.54 (−0.71 to −0.37) <.001 81

Abbreviations: CRT-RC, Combined
Raven Test–The Rural Edition in
China; NA, not applicable.
a Both An et al55 and Li et al56

included 10-year-old children in the
group listed as younger than 10
years (ages 7-10 years reported).

b Includes iodine,44,52-54,57,58

arsenic,36,51,59 aluminum,60 and
non–drinking water fluoride (ie,
fluoride from coal burning61-69).
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Figure 1. Forest Plot for Random-Effects Meta-Analysis of Standardized Mean Differences (SMDs)
of the Association Between Group-Level Measures of Fluoride Exposure and IQ Scores in Children
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presented in eTable 4 in Supplement 1. For fluoride in water,
the associations remained inverse when exposed groups were
restricted to less than 4 mg/L (16 high risk-of-bias studies, 7
low risk-of-bias studies) or less than 2 mg/L (4 high risk-of-
bias studies, 4 low risk-of-bias studies); however, the associa-
tion was null at less than 1.5 mg/L (4 high risk-of-bias studies,
3 low risk-of-bias studies) (Table 2; eTable 4 in Supple-
ment 1). When we included only studies with low risk of bias,
the associations remained inverse at less than 4 mg/L, less than
2 mg/L, and less than 1.5 mg/L fluoride in water, and the lin-
ear model was the best fit (Table 2; eTable 4 in Supplement 1).
For urinary fluoride, the associations remained inverse when
exposed groups were restricted to less than 4 mg/L (4 high risk-
of-bias studies, 10 low risk-of-bias studies), less than 2 mg/L
(2 high risk-of-bias studies, 4 low risk-of-bias studies), and less
than 1.5 mg/L (1 high risk-of bias study, 4 low risk-of-bias stud-
ies). When we included only the low risk-of-bias studies, the
associations remained inverse at less than 4 mg/L, less than
2 mg/L, and less than 1.5 mg/L for urinary fluoride, and the lin-
ear model was the best fit (Table 2; eTable 4 in Supplement 1).

Regression Slopes Meta-Analysis
Each of the 19 studies with individual-level fluoride
measures (2 high risk-of-bias studies, 17 low risk-of-bias
studies) (eTable 1 in Supplement 1) reported urinary fluoride
levels,9-11,32-38,96-104 2 reported fluoride intake,32,97 and 2 re-
ported water fluoride levels.32,33 Thirteen studies were in-
cluded in the primary regression slopes meta-analysis. The 6
remaining studies, including 3 studies96-98 with populations
that overlapped with already-included studies32,33,101 and 3 that
reported scores based on Bayley assessments,102-104 were in-
cluded in sensitivity analyses (eTable 5 in Supplement 1).

In the primary regression slopes meta-analysis, the pooled
effect estimate from the 13 studies (2 high risk-of-bias stud-
ies, 11 low risk-of-bias studies; n = 4475 children) with indi-
vidual-level data showed that a 1-mg/L increase in urinary fluo-
ride was associated with a statistically significant decrease in
IQ score of 1.63 points (95% CI, −2.33 to −0.93; P < .001)
(Figure 2) with evidence of heterogeneity (I2 = 60%; P < .001;
Table 3) and no indications of publication bias (eFigures 17 and
18 in Supplement 1). When restricted to low risk-of-bias stud-
ies, the decrease in IQ score was 1.14 points (95% CI, −1.68 to
−0.61; P < .001) with evidence of low heterogeneity (I2 = 23%;
P = .28; Table 3; eFigure 19 in Supplement 1) and a slight
indication of publication bias (eFigure 20 in Supplement 1). The
trim-and-fill analysis had an adjusted estimate of −0.78 (95%
CI, −1.33 to −0.22) (eFigures 21 and 22 in Supplement 1).

Subgroup analyses by risk of bias, sex, country, exposure ma-
trix, outcome assessment type, and prenatal or postnatal expo-
sure found inverse associations between measures of fluoride
exposure and children’s IQ (Table 3; eFigures 23-27 in Supple-
ment 1). The sensitivity analyses including reporting scores based
on Bayley assessments102-104 showed no substantial changes in
the pooled effect estimates (eTable 5 in Supplement 1).

Discussion
This systematic review and meta-analysis found statistically
significant inverse associations between measures of fluo-
ride exposure and children’s IQ. These inverse associations
were observed in all 3 sets of meta-analyses: the mean-
effects meta-analysis (47 high risk-of-bias studies, 12 low risk-
of-bias studies) and dose-response mean-effects meta-

Table 2. Pooled Changes in Standardized Mean Differences (SMDs) From the Linear Model From the
Dose-Response Mean-Effects Meta-Analyses Using Group-Level Measures of Fluoride Exposure

Fluoride exposure,
mg/L

Studies,
No.

Effect
estimates, No.a Children, No.

Parameter estimatesb

β (95% CI) P value
Water fluoride, all studies

All data 31 41 12 487 −0.15 (−0.20 to −0.11) <.001

<4 23 29 9554 −0.22 (−0.27 to −0.17) <.001

<2 8 10 3682 −0.18 (−0.40 to 0.03) .10

<1.5 7 7 2832 0.05 (−0.36 to 0.45) .82

Water fluoride, low risk-of-bias studies

All data 7 12 5066 −0.21 (−0.33 to −0.09) .001

<4 7 10 4962 −0.23 (−0.34 to −0.11) <.001

<2 4 5 1632 −0.33 (−0.53 to −0.13) .001

<1.5 3 3 879 −0.32 (−0.91 to 0.26) .28

Urinary fluoride, all studies

All data 20 32 9756 −0.15 (−0.23 to −0.07) <.001

<4 14 25 8019 −0.20 (−0.31 to −0.08) .001

<2 6 10 4692 −0.08 (−0.15 to −0.005) .04

<1.5 5 8 4219 −0.08 (−0.15 to −0.003) .04

Urinary fluoride, low risk-of-bias studies

All data 10 14 6847 −0.13 (−0.23 to −0.03) .01

<4 10 14 6847 −0.13 (−0.23 to −0.03) .01

<2 4 7 4179 −0.08 (−0.15 to −0.002) .04

<1.5 4 7 4179 −0.08 (−0.15 to −0.002) .04

a This represents the number of
effect estimates (SMDs) from all the
studies included in the analysis.
Studies with more than 2 exposure
levels provided more than 1 SMD for
inclusion in the dose-response
meta-analysis.

b Parameter estimates are changes in
SMDs (β [95% CI]) for the linear
model based on the restricted
maximum likelihood models.
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analysis (27 high risk-of-bias studies, 11 low risk-of-bias studies)
of group-level fluoride exposure, and the regression slopes
meta-analysis (2 high risk-of-bias studies, 11 low risk-of-bias

studies) of individual-level urinary fluoride. Within each of
these meta-analyses, we used prespecified criteria to assess
study quality and classify studies into low and high risk of bias.

Figure 2. Forest Plot for Random-Effects Meta-Analysis of Regression Slopes
of the Association Between Individual-Level Urinary Fluoride Measures and IQ Scores in Children
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The effect measures are regression slopes (β) per 1-mg/L increase in urinary
fluoride. The βs for individual studies are shown with boxes representing the
weight, and the pooled estimate is shown as a diamond. Error bars represent

95% CIs for the study-specific βs. Studies are presented in chronological order
as found in eTable 1 in Supplement 1.

Table 3. Pooled Changes in IQ Scores From Random-Effects Meta-Analyses of the Association
Between Individual-Level Measures of Urinary Fluoride and IQ Scores in Children

Analysis Studies, No. β (95% CI)

Heterogeneity

P value I2, %
Overall association with IQ 13 −1.63 (−2.33 to −0.93) <.001 60

Subgroup analysis

Risk of bias

Low 11 −1.14 (−1.68 to −0.61) .28 23

High 2 −3.38 (−4.30 to −2.45) .68 0

Sex

Female 3 −1.07 (−2.20 to 0.05) .33 0

Male 3 −1.21 (−3.80 to 1.37) .09 65

Country

Canada 1 −1.95 (−5.19 to 1.28) NA NA

China 8 −1.20 (−1.79 to −0.61) .25 31

Denmark 1 0.26 (−2.02 to 2.54) NA NA

Mexico 1 −4.02 (−7.22 to −0.82) NA NA

Pakistan 1 −3.45 (−4.44 to −2.46) NA NA

Taiwan 1 −1.22 (−3.64 to 1.21) NA NA

Assessment type

CRT-RC 9 −1.19 (−1.75 to −0.63) .34 27

Non-CRT-RC tests 4 −2.32 (−4.26 to −0.37) .03 66

Exposure matrix

Urinary fluoride 13 −1.63 (−2.33 to −0.93) <.001 60

Intake 2 −3.87 (−7.15 to −0.59) .74 0

Water fluoride 2 −4.77 (−9.09 to −0.45) .71 0

Exposure timing

Prenatal 3 −1.70 (−4.23 to 0.84) .09 57

Postnatal 10 −1.65 (−2.39 to −0.90) <.001 64

Abbreviations: CRT-RC, Combined
Raven Test–The Rural Edition in
China; NA, not applicable.
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Stratified analyses found similar inverse associations in both
study quality strata. Further subgroup analyses by sex, age, tim-
ing of exposure, study location, outcome assessment type, and
exposure assessment matrix also found inverse associations
between fluoride exposure and children’s IQ.

Studies in these meta-analyses included cross-sectional and
prospective cohort designs, each study having its own strengths
and limitations. Although all studies contribute to our under-
standing of the overall association, well-designed studies that
accurately measure exposure and outcome and adequately ac-
count for potential confounding variables are particularly infor-
mative. In these meta-analyses, we followed the OHAT
approach14 to extract data from each of the published studies and
to classify studies into high risk of bias and low risk of bias based
on carefully predefined criteria.13 To make our process and de-
cisions transparent, we provide full public access to the ex-
tracted data, risk-of-bias ratings, and rationale for those ratings
for each individual study. These data can be used by other in-
vestigatorstoevaluateorextendourprocessandanalysis(https://
hawcproject.org/assessment/405/).

Studies using group-level exposures were assessed in the
mean-effects meta-analysis. An advantage of such studies is that
they can, for example, examine communities with different CWS
fluoride levels. Although in the United States 40% to 70% of a
person’s fluoride intake comes from fluoridated drinking wa-
ter, there are other sources of fluoride exposure.4 Therefore, re-
lyingonCWSlevelsalonemayunderestimateanindividual’stotal
fluoride exposure, which may vary considerably among mem-
bers of a group depending on individual behaviors. Most of
the studies in the mean-effects meta-analysis were cross-
sectional; however, we have higher confidence in cross-
sectional studies when there is evidence of temporality.14 Among
the low risk-of-bias cross-sectional studies, most provided in-
formation to establish that exposure likely preceded the out-
come (eg, only including children who had lived in a commu-
nity since birth or children who had dental fluorosis).

Studies using individual-level exposures were assessed in
the regression slopes meta-analysis, which included 13 stud-
ies with urinary fluoride measures, a more precise exposure
assessment measure than group-level exposures. Unlike drink-
ing water levels, individual-level urinary fluoride concentra-
tions include all ingested fluoride and are considered a valid
estimate of total fluoride exposure.106,107 Fluoride in urine is
measured from both single or spot samples and multiple col-
lections. When compared with 24-hour urine samples, spot
samples are more prone to the influence of timing of expo-
sure and can be affected by differences in dilution. However,
correlations between urinary fluoride concentrations from 24-
hour samples and spot samples adjusted for urinary dilution
have been described.108 There were several recent North Ameri-
can prospective cohort studies conducted in Canada and
Mexico32,96,97,101 that reported maternal urinary fluoride lev-
els comparable to those in the United States.109,110 These stud-
ies combined multiple urinary measurements over the course
of pregnancy to examine prenatal fluoride exposure during a
critical period of brain development. Although the estimated
decreases in IQ found in the regression slopes meta-analysis
may seem small (1.63 IQ points per 1-mg/L increase in urinary

fluoride), research on other neurotoxicants has shown that
subtle shifts in IQ at the population level can affect people who
fall within the high and low ranges of the population’s IQ
distribution.111-115 For context, a 5-point decrease in a popula-
tion’s IQ would nearly double the number of people classified
as intellectually disabled.116

Finally, studies with group-level exposure measurements
were used in the dose-response mean-effects meta-analysis of
water or urinary fluoride levels. Although we examined 2 non-
linear models, a linear model almost always provided the best
fit for both water and urinary data. There was a statistically sig-
nificant dose-response association between group-level fluo-
ride measures and children’s IQ. In stratified analyses of low risk-
of-bias studies, the association remained inverse when exposure
was restricted to less than 4 mg/L, less than 2 mg/L, and less than
1.5 mg/L fluoride in water or urine; except for fluoride concen-
trations less than 1.5 mg/L in water, these results were statisti-
cally significant. There was some inconsistency in the best-fit
model and a lack of statistical significance at lower levels for wa-
ter fluoride exposures, leading to uncertainty in the shape of the
dose-response curve. This uncertainty is not surprising given the
lower number of observations for fluoride concentrations in wa-
ter (n = 879 from 3 studies) compared with urinary fluoride con-
centrations (n = 4218 from 5 studies). The ability to detect a true
effect is reduced at lower exposure levels when exposure con-
trasts are diminished.117 Although the same cutoffs were used
for the water and urine subgroup analyses, fluoride levels in wa-
ter likely underestimate total fluoride exposures that are better
estimated by levels in urine. Variable fluoride exposures from
nonwater sources may also decrease the precision of the effect
estimates at lower fluoride concentrations in water. In con-
trast, the best model fit for urinary fluoride concentrations was
consistently linear.

Elevated naturally occurring fluoride levels in groundwa-
ter (>1.5 mg/L) are prevalent globally and include central
Australia, eastern Brazil, sub-Saharan Africa, the southern
Arabian Peninsula, south and east Asia, and western North
America.118 Although to our knowledge no epidemiological
studies addressing fluoride exposure and children’s IQ have
been conducted in the United States, significant inequalities
in CWS fluoride levels exist by county sociodemographic char-
acteristics, including racial and ethnic composition, espe-
cially among Hispanic and Latino communities.119 Of note,
there are regions of the United States where CWS and private
wells contain natural fluoride concentrations greater than 1.5
mg/L,120 serving more than 2.9 million US residents.119 In ad-
dition, the US Geological Survey estimates that 172 000 US resi-
dents are served by domestic wells that exceed EPA’s enforce-
able standard of 4.0 mg/L fluoride in drinking water, and
522 000 are served by domestic wells that exceed EPA’s non-
enforceable standard of 2.0 mg/L fluoride in drinking water.1

To reduce risk of moderate-to-severe dental fluorosis, the CDC
recommends that parents use an alternative source of water
for children aged 8 years or younger and for bottle-fed infants
if their primary drinking water contains greater than 2 mg/L
of fluoride.121 Currently, there are no recommendations or re-
strictions on fluoride levels in drinking water based on cogni-
tive neurodevelopmental outcomes.121
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To our knowledge, no studies of fluoride exposure and chil-
dren’s IQ have been performed in the United States, and no na-
tionally representative urinary fluoride levels are available, hin-
dering application of these findings to the US population.
Although this meta-analysis was not designed to address the
broader public health implications of water fluoridation in the
United States, these results may inform future public health
risk-benefit assessments of fluoride.

Strengths and Limitations
Strengths of this systematic review and meta-analysis include
a large body of literature, a predefined systematic search and
screening process, risk-of-bias assessment of individual stud-
ies, prespecified subgroup analyses, and use of both group-
level and individual-level exposure data. The consistency of the
inverse associations across the high and low risk-of-bias stud-
ies, different intelligence assessment methods, different expo-
sure matrices, different study locations, different analytical ap-
proaches, and evidence of a dose-response association
strengthen confidence in the conclusion of an overall inverse as-
sociation between fluoride exposure and children’s IQ. It is no-
table that there is a diversity of study design factors across stud-
ies, which could be described as overall heterogeneity of the body
of evidence. In this case, the heterogeneity supports the robust-
ness of the conclusions and is different from heterogeneity in
the results, which we did not find in this meta-analysis.

The body of existing literature has limitations in that many
of the studies were classified as having high risk of bias. Most
of the studies included in the mean-effects and dose-
response mean-effects meta-analyses were cross-sectional and

had study design and/or methodological limitations. How-
ever, the consistency in meta-analytic associations across the
high and low risk-of-bias studies and the other subgroup analy-
ses reduced the likelihood that specific biases or potential con-
founders in individual studies could explain the inverse asso-
ciation between fluoride exposure and children’s IQ.

Whileseveralrecentstudiesconcludethatfluorideexposures
from community water fluoridation are not associated with chil-
dren’s IQ or other neurodevelopmental outcomes,122-124 the re-
sults of the mean-effects meta-analysis were consistent with 6
previous meta-analyses6-8,122,125,126 that reported statistically sig-
nificant inverse associations between fluoride exposure and chil-
dren’s IQ scores (see the “Characteristics of Previous Meta-
Analyses” section of eAppendix 1 and eTable 6 in Supplement 1).

Conclusions
This meta-analysis found inverse associations and an inverse
dose-response association between fluoride exposure
and children’s IQ across the multicountry epidemiological lit-
erature. There were limited data and uncertainty in the
dose-response association between fluoride exposure and chil-
dren’s IQ when fluoride exposure was estimated by drinking
water alone at concentrations less than 1.5 mg/L. Confidence
in the associations at lower fluoride levels could be increased
by additional prospective cohort studies with individual
fluoride exposure measures. These results may inform future
comprehensive public health risk-benefit assessments
of fluoride.
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